
Microservice-tailored Generation of Session-based
Workload Models for Representative Load Testing

Henning Schulz, Tobias Angerstein
Novatec Consulting GmbH, Germany

Dušan Okanović, André van Hoorn
University of Stuttgart, Germany

Abstract—Load tests are commonly used to assess the per-
formance of an application system. A representative load test
uses workload characteristics according to the user behavior
in production. Session-based systems have special workload
characteristics as the system is used as sequences of inter-related
requests. Approaches exist to automatically extract session-based
workload models from production request logs. However, they
focus on system-level testing, which is in stark contrast with
modern development practices, where one development team is in
charge of developing, testing, and deploying a single microservice.
Hence, representative session-based workload models for testing
single microservices and their integration are desirable.

To deal with these issues, we propose a concept for tailoring a
representative load test workload to target only certain services,
instead of targeting the whole system. Our goal is to transform
the workload for one or more specified service(s) from the system-
level workload collected in production. Using this approach, only
a subset of the application’s microservices is deployed for a
load test, specifically the targeted services and the services they
depend on. We propose two algorithms. The log-based algorithm
deals with extracting the workload for a specific service from
collected production traces. The model-based algorithm performs
the workload tailoring on the level of the workload model.

In an experiment series with a representative microservice
application, we compare both algorithms with system-level and
request-based workoad models. The results show that when load
testing a set of services, the tailored workload models outperform
untailored workload models in terms of test duration and the
capacity of the test infrastructure, and outperform request-based
workload models in terms of representativeness.

I. INTRODUCTION

The user satisfaction and business value of application
systems is highly dependent on runtime quality properties
such as performance. Performance evaluation is an integral
part of the software development cycle. A common approach
for performance evaluation is load testing [24]: a load driver
generates synthetic requests to the system under test according
to a previously defined workload model. Representativeness is
a common requirement for load tests, i.e., the characteristics of
the generated workload — e.g., arrival rates and parameters of
requests — correspond to the characteristics of the production
workload [11]. Different approaches for extracting workload
models from production request logs have been proposed [30],
[39], [41]. Fig. 1 depicts a typical workflow for the extraction
of session-based workload models and load tests: 1 Request
or trace information is collected in respective logs; 2 Session
logs are extracted from the request/trace logs by grouping the
requests by the session ID; 3 The session log records are
clustered to obtain a workload model; 4 The workload model

is parameterized [37] and transformed into the resulting load
test.

Modern application systems comply to the microservices
architectural style [33], and are developed and maintained ac-
cording to DevOps practices [42]. Such systems are composed
of a potentially large number of microservices, being indepen-
dently developed, tested, deployed, and operated by different
teams. This paper focuses on representative load testing of
individual microservices. According to component level tests
in other contexts [9], in the best case, only the microservice
under test is deployed. In this context, the application of the
session-based workload extraction and load testing approaches
is limited. For example, they assume the deployment and test
of the entire system. However, this is not desirable for several
reasons, e.g., the large amounts of computing capacities to
be provisioned for the load test environment. Moreover, the
session-based workload models target the system interface. It
seems obvious to use request-based [5] workload extraction
approaches on the service level. However, they do not consider
the session characteristics of the workload.

In this paper, we adopt the concept of representative session-
based load testing from the system level to the microservice
level. Based on the workload extraction workflow in Fig. 1,
we propose two algorithms for extracting microservice-tailored
workload models from system-level workload and microser-
vice architectural information. The first algorithm (log-based
tailoring) transforms the request logs to generate tailored
inputs for the subsequent extractions steps that produce a
tailored workload model. The second algorithm (model-based
tailoring) transforms the system-level workload model based
on the architectural information to obtain a microservice-
specific workload model.

We evaluate our approach in an experimental study using a
microservice-based application. Both algorithms are compared
to two baseline algorithms with respect to the representative-
ness and the costs of the load tests. The results show that
the tailoring approaches slightly reduce the representativeness
compared to a system-level workload model, but significantly
increase it compared to request-based approaches. Further-
more, they can — under certain conditions — reduce the re-
quired test execution time and especially reduce the number
of microservices to be deployed for the test. The model-based
approach performs better than the log-based approach in terms
of the representativeness and qualitative characteristics of the
generated models, even though the log-based approach might

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext
To appear as: H. Schulz, T. Angerstein, D. Okanović, and A. van Hoorn. Microservice-tailored generation of session-based workload models for representative load testing. In Proceedings of the 27th IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2019). Copyright IEEE, 2019.

Load
test

Application
monitoring

Session
extraction

Workload
clustering

Load test
transformation

Request /
trace logs Session logs Workload

model
Production
workload

/

...

1 2 3 4front-
end

carts user

Fig. 1: Load test extraction process.

become preferable for large-scale applications.
The remainder of this paper is organized as follows. Sec-

tion II details the background of this work and emphasizes the
addressed problem. Section III discusses related work. Sec-
tion IV presents our approach, particularly detailing the two
algorithms. Section V includes the experimental evaluation.
Section VI concludes the paper and outlines future work.

II. BACKGROUND AND PROBLEM STATEMENT

A typical example for session-based microservice applica-
tions are web shops for products that can be browsed and pur-
chased by end users. As illustrated as part of Fig. 1, users in-
teract with such an application via an entry point, e.g., a front-
end microservice. The response to a user request will then be
generated through an interplay of other microservices such as
carts and user. According to a session-based workload [20],
[30], user requests are followed by subsequent requests based
on the respective reply from the system. Following DevOps
practices [42], each microservice is typically developed, (load)
tested, and operated by an individual team, with an individ-
ual continuous integration and delivery (CI/CD) pipeline. To
prepare for the expected production workload, a load test
simulates real users by sending requests to the endpoints (e.g.,
REST endpoints). For load testing the whole application, i.e.,
the workload arriving at the front-end microservice, existing
approaches support a tester by extracting representative load
tests from user sessions captured in production (e.g., using
application performance management (APM) tools) [10], [30],
[39], [41]. However, these approaches are not applicable to
test a single microservice such as carts individually, because
it is not directly invoked by end users and thus, is missing
a session context. For ensuring the team’s individuality and
minimizing the required amount of microservices deployed for
the load test as part of the pipeline, we extend the existing
WESSBAS approach [41] to fill this gap.

WESSBAS uses a domain-specific language (DSL) to spec-
ify Markov-chain-based workload models, which can be trans-
formed to load tests (4 in Fig. 1). Among other artifacts, a
workload model consists of one or several behavior models
describing how the end users behave. For a set of available
endpoints of the application, each of them utilizes a Markov
chain with the endpoints as states to describe the order in
which requests are submitted. A load test can then submit
requests to the application by following the transitions of the

chain with the specified transition probabilities and by waiting
for additionally specified think times per transition. The goal
of having multiple behavior models is to increase the rep-
resentativeness of the simulated users by separating different
user behavior, e.g., users mostly browsing vs. users purchasing
a lot. The behavior models are automatically extracted by
clustering recorded sessions (3 in Fig. 1), with a behavior
mix describing the relative frequency of each behavior model.
Here, a crucial information is the session ID of the users,
allowing to group multiple observed user requests to a session
of subsequent related requests (2 in Fig. 1).

Requests to microservices such as carts and user, which
are not directly requested by end users but only by other mi-
croservices, do not contain a session ID. Hence, the extraction
process in Fig. 1 cannot generate load tests targeting these
services. As a workaround, we can change the workload model
to a request-based model, which simply defines how often
each endpoint is requested per time interval. However, such a
workload model does not take into account the actual request
order, which can also influence the microservice’s behavior.

Therefore, we extend the load test extraction process by
tailoring certain recorded artifacts to specific microservices
for extracting Markov-chain-based, microservice-tailored load
tests. For that, we collect traces alongside the request logs
(1 in Fig. 1) for reusing the session IDs from the user
requests. Traces are commonly recorded by monitoring tools
and represent the control flow through the application as
nested requests [34]. The root request is the entry point to
the application, i.e. a request to the front-end service. Further
requests are invoked by the root request such as to the carts
service. Furthermore, each request holds timing information,
such as a time stamp and response time, and meta information
including the session ID. This information can be used to
determine the impact of a user request to an endpoint of the
front-end on the microservices to be tested.

III. RELATED WORK

Related work can be found in the fields of performance
testing and, more specific, load testing. We also consider the
performance modeling approaches applied in the design phase
of software development.

According to the testing pyramid proposed by Cohn [12],
testing can be applied at different levels of an application.
Unit tests, which focus on testing of particular functions,

are at the bottom like the ones most often applied, while at
the top of the pyramid are manual U/I tests and testing in
production, as an emerging trend. In the middle are compo-
nent, integration, and system tests. A similar pyramid can be
derived for performance testing. For example, Horky et al. [23]
propose to perform performance unit tests, i.e., to test specific
functions under a workload, not only with specific inputs. In
this paper, we focus on the middle part of the performance
testing pyramid, i.e., on tailored load tests for performance
evaluation of particular components, e.g., microservices, and
their integration with other components.

Becker et al. [6] propose an approach for the model-based
generation of performance prototypes, which include resource
demands and usage models. The approach from Versteeg et
al. [40] generates prototype stubs based on the message traces
collected in production to support testing in environments
such as DevOps. Baltas and Field [4] propose a combined
approach which includes performance stubs when the code
is not available, to support continuous testing throughout the
development lifecycle. Field et al. [19] developed an approach
to test components in virtual time and reduce the testing
time. They propose to enrich mock objects with performance
models to allow for their realistic behavior. To have a time
consistency between the mock objects and the real code,
the application execution time has to be virtualized too. In
this paper, we propose a complementary approach, which,
instead of performance stubs, uses multiple load drivers. A
combination of two approaches would allow for a complete
isolation of a microservice during the testing.

To deal with the time required for testing in order to support
faster release cycles, some authors propose test case selection
and prioritization. However, they are dealing with functional
testing (as shown by Kazmi et al. [25]), and do not take
into account performance testing specifics, such as operational
profile or changes in the incoming workload.

Some authors argue that the behavior of complex
(microservice-based) applications cannot be evaluated at de-
sign time [35], i.e., the results are not realistic. Therefore, op-
erational profiles are relevant in software testing, not only for
performance, as we show in this work, but also reliability [32],
[28] and scalability [3].

The problem we are dealing with in this paper is also known
in other fields, e.g., workload decomposition in performance
models. The Forced Flow Law from operational analysis [16],
represented with the equation Xi = X · Vi, where Vi is
a visit count for the resource i of a system, describes the
relationship between throughput of the entire system X and
throughput of a particular component/resource of that system
Xi. Koziolek [27] proposed modeling languages as a part
of the Palladio Component Model [7] to describe user (“us-
age modeling language”) and component behavior (“resource
demanding service effect specification”). A PCM instance
containing these descriptions is then mapped to a layered
queuing network, to be solved. The concept of workload
transformation is required when deriving a workload between
different modeling formalisms, e.g., between different levels of

description [21]. Several works by Cortellessa et al. [14], [15],
[8] deal with deriving queuing networks from annotated UML
models, where user behavior is described with e.g., activity
diagrams, to assess the performance of particular components.

As a prerequisite for operational testing, workload char-
acterization [18] is essential for software performance eval-
uation. It summarizes and explains workload properties and
furthermore, it allows for the generation of realistic synthetic
workloads, for both simulation and benchmarking [11]. An
approach based on Markov chains is proposed by Menascé
et al. [30], to extract Customer Behavior Model Graphs
(CBMGs) from the traces in server logs for load testing of
e-commerce web sites. Ruffo et al. [36] extend this approach
to all web applications. In both approaches, user sessions
are used to identify Markov states, representing the user
interaction with the system, and transitions between these
states, annotated with user think times and probabilities. Be-
cause Markov chains cannot model inter-request dependencies
in user sessions, Shams et al. [39] developed an approach
which uses Extended Finite State Machines (EFSMs). Vögele
et al. [41] propose the WESSBAS approach for workload
extraction and characterization, combining Markov Chains and
EFSMs, to generate executable workload models based on
production session logs. The LIMBO approach [26] by von
Kistowski et al. allows for modeling of synthetic workloads
with variable intensities, but without the modeling of the user
behavior. These approaches, however, focus on the system
level, i.e., they require an entire system to be deployed to
perform a test. For complex software systems, this requires
a significant amount of resources and time.

To the best of our knowledge, there is no performance-aware
testing approach equivalent to functional component tests and
integration tests. Load tests tailored based on collected traces
close this gap, by allowing only a determined set of services
to be deployed and tested.

IV. WORKLOAD MODEL TAILORING

In this section, we propose two alternative algorithms
for tailoring a session-based workload model extracted from
collected request logs for a specific set of target microser-
vices. We build on Markov-chain-based extraction approaches
such as WESSBAS [41], applying the algorithms at different
steps of the extraction process presented in Fig. 1. First, we
introduce log-based tailoring, which modifies the collected
request or session logs. The second algorithm is model-based
tailoring, which modifies the extracted workload model. In
the following, Section IV-A introduces the notations used and
Section IV-B motivates the selection of the two algorithms.
Then, the two algorithms are presented in Sections IV-C
and IV-D.

A. Notations
An overview of the notations we use in the following is

provided in Table I. Corresponding to Fig. 1 from left to
right, we consider an application with n microservices, e.g.,
front-end, carts, user, etc. Each microservice mi has a set of

TABLE I: Table of Notations

Notation Explanation

M = {m1, . . . ,mn} existing microservices, |M | = n
M ⇢ M microservices of a tailored workload model
Ei = {e1, . . . , eki

} endpoints of mi, |Ei| = ki
E =

Sn
i=1 Ei endpoints of all microservices

E ⇢ E endpoints of a tailored workload model

R request logs
" : R ! E called endpoint of request
� : R ! R session ID of request
t : R ! R time stamp of request
� : R ! R duration of request

T trace logs
⌧ = (r⌧ , R⌧ , C⌧) 2 T trace tree with root request r⌧ , vertices R⌧

C⌧ ⇢ R⌧ ⇥R⌧ call relations/edges of a trace ⌧

S ⇢ R⇤ session logs (R⇤ =
S1

i=1 Ri)

W = ({W1, . . . ,Wq}, f) workload model with q behavior models
f : {W1, . . . ,Wq} ! [0, 1] relative frequency of behavior model
Wj = (Ej , pj ,�j ,Sj) behavior model with endpoints Ej ⇢ E
I, $ initial and final state of a behavior model
pj : Ej ⇥ Ej ! [0, 1] state transition probability
�j : Ej ⇥ Ej ! N (µ,�) think time (normal) distribution
Sj ⇢ S sessions aggregated in Wj
↵�1 ⇤ ��2 convolution of normal distributions �1,�2

endpoints Ei, e.g., POST /carts/{}/items. M and E denote the
entirety of all existing microservices and endpoints. We use
the script font M, E for denoting selected subsets used for
tailoring a specific workload model.

Request logs are designated as R and comprise all end user
requests that have been observed at the entry points of the
application, e.g., the endpoints of the front-end microservice.
Each individual request r 2 R is characterized by the called
endpoint "(r), a user session ID �(r), a start time stamp t(r),
and a duration �(r). Trace logs T add to R the additional
dimension of the requests internally made by the microservices
to process the end user request. Each trace ⌧ 2 T is defined by
a directed tree consisting of the root request r⌧ 2 R, further
requests (nodes) R⌧ to the different microservices, and the call
relations (edges) C⌧ . For convenience, we also use �, t, and
� for traces: �(⌧ = (r⌧ , ·, ·)) := �(r⌧).

Session logs S are extracted from R (2 in Fig. 1) by
grouping the requests by the session ID:

8s 2 S 8r1, r2 2 s : �(r1) = �(r2)

and by sorting them according to the time stamp:

8s 2 S 8r1, r2 2 s : r1 r2 () t(r1) t(r2)

Session logs S are clustered by similar user behavior and
aggregated in a workload model W (3 in Fig. 1). A workload
model consists of one Markov chain Wj — corresponding
to a WESSBAS behavior model — per session cluster and a
weighting function f defining the workload mix. Each Markov
chain is defined by states Ej , a transition probability function
pj , and a think time distribution function �j . Furthermore,
we record the session cluster Sj . Finally, we denote the linear

combination (convolution [31]) of two normal distributions
�1,�2 as follows:

↵�1 ⇤ ��2 ⇠ N (↵µ1 + �µ2,↵
2
�
2
1 + �

2
�
2
2) (1)

B. Overview of Tailoring Approaches
In order to solve the problem of tailoring a workload model

to a set of microservices, we are first given the artifacts
R, T ,S,W (Fig. 1). In addition, we use the set of microser-
vices M to be targeted by the load test, and the endpoints E
corresponding to M. The goal is to generate a workload model
tailored to the endpoints E by using the collected traces T .

Based on the load test extraction process, we identify four
approaches to reach this goal. The simplest one is to record
only the requests arriving at E and to simply specify the rate
at which each endpoint is requested. Such a request-based
workload model will be able to replay the mean request rates
correctly, but misses relevant session information, which is re-
quired for preserving the request orders and inter-request time
distributions. Therefore, we aim at developing more elaborate
algorithms, but use the request-based workload model as a
baseline in our evaluation.

The first proposed algorithm is based on the request logs
R, measured at the endpoints requested by the end users
and thus, containing the session IDs �(·). By using the trace
corresponding to each request r 2 R, we can replace r by
all requests targeting E while preserving the session ID �(r).
Such modified request logs only target E and allow to reuse
the remaining steps of Fig. 1.

A second algorithm could address the session logs S and
replace each request similarly to the first algorithm. However,
this would lead to exactly the same result. Therefore, we do
not differentiate between these two algorithms and only focus
on the first one. We denote it as log-based tailoring.

Finally, an algorithm can modify the workload model W ,
which we refer to as model-based tailoring. In doing so,
the algorithm needs to replace each state — which aggregates
several requests to the respective endpoint — in each Markov
chain Wj by the aggregate control flow caused by such a
request at the endpoints E . For instance, an end user request
POST /orders to the front-end can cause a POST /orders
request to the orders microservice and several requests to
the user microservice, in potentially varying sequences. This
call behavior needs to be reflected in the replacement of the
original Markov state.

C. Log-based Tailoring
The log-based tailoring algorithm takes as input recorded

trace logs T — which implicitly contain R as root requests —
and the endpoints E of a set of microservices M, which the
resulting load test should target. The output are request logs
R tailored to E . As described earlier, it is also possible to use
the session logs in S and run the procedure on them, with the
same results.

The algorithm works as formalized in Algorithm 1 and
illustrated in Fig. 2. We represent three exemplary traces with
root requests r1, r2, r3 and further nested requests as layered

Algorithm 1 Extract request logs tailored to endpoints E
1: function TAILORREQUESTLOGS(T , E)
2: R ;
3: for all ⌧ 2 T do
4: R0 TAILORREQUEST(⌧ , E)
5: �(R0) �(⌧)
6: R R [R0

7: end for
8: return R
9: end function

Algorithm 2 Tailor root request of trace ⌧ to endpoints E
1: function TAILORREQUEST(⌧ , E)
2: R0 ;, T {⌧}
3: while T 6= ; do
4: ⌧ = (r,R,C) 2 T . arbitrarily selected
5: T T \ {⌧}
6: if "(r) 2 E then
7: R0 R0 [{r}
8: else
9: T T [{(r0, R, C) | r0 2 R ^ (r, r0) 2 C}

10: end if
11: end while
12: return R0

13: end function

bars with the time on the horizontal axis and the call hierarchy
on the vertical axis. We furthermore consider three requests
r4, r5, r6 to target an endpoint in E . The algorithm processes
all traces and from each, it collects the requests targeting E into
R0 (line 4). For instance, the trace with root request r1 results
in a single-element set {r4} and r2 is tailored to {r5, r6}.
Furthermore, the session IDs of the collected requests are set
to the root requests (line 5), e.g., �(r5) = �(r6) := �2.

The request collection from every individual trace is im-
plemented in Algorithm 2. It takes one trace ⌧ 2 T and
the endpoints E as inputs and performs a breadth-first search
for collecting all relevant requests from ⌧ . The algorithm
processes a set T of sub traces, initialized with ⌧ (line 2) and
continues until no more elements are contained in T . In each
iteration, one trace ⌧ is selected and removed from T (lines
4 and 5). Then, it is checked whether the root request r of ⌧
targets one of the endpoints in E (line 6). If so, r is added to the
resulting set of request logs (line 7). Otherwise, all sub traces
are extracted from ⌧ and added to T (line 9). As an example,
the trace with root request r2 in Fig. 2 has two sub traces with
root requests r5 and r6. The breadth-first search ensures that
only the highest-level requests that target E are collected, e.g.,
if r5 contained another nested request r7 targeting E as well,
it would not be collected. This is important because, in the
load test, the requests to the lower-level requests will be made
by the microservices targeted by the higher-level requests and
should not be duplicated by the load test.

time

ca
ll	
hi
er
ar
ch
y

request

request	to

(a) Input: trace logs

time

ca
ll	
hi
er
ar
ch
y

request
request	to
request

(b) Output: tailored request logs

time

ca
ll	
hi
er
ar
ch
y

request
request	to
session	ID

(c) Legend

Fig. 2: An example of tailoring requests r1, r2, r3 to E
(Algorithms 1 and 2).

Algorithm 3 Tailor workload model W to endpoints E
1: function TAILORWORKLOADMODEL(W, T , E)
2: for all Wj = (Ej , pj ,�j ,Sj) 2W do
3: for all e 2 Ej , e /2 E do
4: T 0 {(r⌧ , R⌧ , C⌧) 2 T |

9s 2 Sj 9r 2 s : r⌧ = r ^ "(r⌧) = e}
5: �(T 0) {1, . . . , |T 0|}
6: R0 TAILORREQUESTLOGS(T 0

, E)
7: if R0 = ; then
8: REMOVESTATE(Wj , e, �(T 0))
9: else

10: R0 R0 [{(I 0,�(⌧), t(⌧), 0) | ⌧ 2 T 0}
11: R0 R0 [{($0,�(⌧), t(⌧)+ �(⌧), 0) | ⌧ 2 T 0}
12: REPLACESTATE(Wj , e,R0)
13: end if
14: end for
15: end for
16: end function

D. Model-based Tailoring
Instead of performing tailoring on the collected traces, the

second algorithm targets the workload model W . While there
are several workload modeling formalisms in the literature
([11], [17]), we chose to use the WESSBAS DSL [41],
which models W as multiple Markov chains (behavior models)
Wj with a relative frequency f(Wj). Each state in a chain
represents requesting a certain endpoint, as shown in Fig. 3a.
Transitions in a chain are characterized by the transition
probability, e.g., pj(e1, e2) = 0.7, and a normally distributed
think time �j(e1, e2) (not shown in the figure).

Algorithm 3 implements the model-based tailoring. It takes
the workload model W , the collected traces T , and the set
of target endpoints E as input and modifies each Markov
chain Wj of W . Based on the traces and the session logs
Sj corresponding to the Markov chain, it replaces all states
that are not contained in E by new endpoints from E . A
replacement needs to model the application’s control flow
that is caused by a request of the original state in another
Markov chain. For that, the algorithm iterates over all such

I

$

I

$

I

$

0.7

0.3 0.5

0.5

0.7
0.15

0.15

(a) Input: Markov chain Wj

I

$

I

$

I

$

0.7

0.3 0.5

0.5

0.7
0.15

0.15

(b) Step 1: concatenate transitions via e3

I

$

I

$

I

$

0.7

0.3 0.5

0.5

0.7
0.15

0.15
(c) Step 2: merge duplicate transitions

Fig. 3: Illustration of REMOVESTATE(Wj , e3, �) (Algorithm 4).

time

ca
ll	
hi
er
ar
ch
y

I' $

request

request	to
(a) Input: trace ⌧

time

ca
ll	
hi
er
ar
ch
y

I' $

request

request	to

(b) Output: request logs with I 0 and $0

time

ca
ll	
hi
er
ar
ch
y

I' $

request

request	to

(c) Legend

Fig. 4: Extracting tailored request logs from a trace in Algo-
rithm 3.

states (line 3) and collects all traces from T whose root
requests are contained in a session in Sj (line 4). Then, it
sets the session IDs of these traces to unique values (line 5)
and reuses Algorithm 1 for extracting request logs tailored to
E , as illustrated in Fig. 4. Given a trace with root request
r2 is processed and there are nested requests r6,1, r6,2, r7

to endpoints in E , the resulting request logs will consist
of {r6,1, r6,2, r7}. Because of the changed session IDs, R0

represents the control flow at the endpoints in E from the
perspective of the original state rather than an end user’s
perspective. Depending on R0, the original state is either
removed if R0 does not cause any requests on E (line 8),
or replaced by a Markov chain extracted from R0 (line 12). In
the former case, the aggregated duration of the requests to the
original state — represented by a normal distribution �(T 0)—
is passed as a parameter for preserving the delay introduced
by the state. In the latter case, placeholder requests I

0 and $0

are added (lines 10 and 11; Fig. 4b), which will ensure that the
new Markov chain will take the same time as the original state
does. Both are important for preserving the overall timing of
Wj . In the following, we describe the algorithms for removing
and replacing states.

Removing a state e with aggregate duration � from a Markov
chain Wj is implemented in Algorithm 4 and illustrated in
Fig. 3. In this example, we want to remove state e3. In a first
step, the algorithm calculates the expected number of steps
the Markov chain loops in the state e— given that such a
cycle exists — based on the geometric series

P1
i=1 pj(e, e)

(line 2). Because e will be removed, we need to ensure that
the time spent in the loop will be preserved in the chain.

Algorithm 4 Remove state e with normally distributed dura-
tion � from Markov chain Wj

1: function REMOVESTATE(Wj = (Ej , pj ,�j ,Sj), e, �)
2: ↵ 1

1�pj(e,e)
� 1 . geometric series [22]

3: for all e0 2 Ej do
4: pj(e, e0) pj(e,e

0)
1�pj(e,e)

5: �j(e, e0) �j(e, e0) ⇤ ↵ ·�j(e, e)
6: end for
7: for all e0, e00 2 Ej do
8: p

0 pj(e0, e00) + pj(e0, e) · pj(e, e00)
9: �j(e0, e00)

h
pj(e

0,e00)
p0 ·�j(e0, e00)

i

⇤
h
pj(e

0,e)·pj(e,e
00)

p0 ·�j(e0, e) ⇤�j(e, e00) ⇤ �
i

10: pj(e0, e00) p
0

11: end for
12: Ej Ej \ {e}
13: end function

Δj(e1, e3)

Δj(e3, e2)

Δj(e1, e3) * Δj(e3, e2) * δ

0 5 10 15 20
think time [s]

(a) Step 1: concatenate (e1, e3) and (e3, e2)

Δj(e1, e2)
Δj(e1, e3) * Δj(e3, e2) * δ

⎡

⎣
⎢

0.7
0.85

⋅ Δj(e1, e2)
⎤

⎦
⎥ *

⎡

⎣
⎢
0.15
0.85

⋅ Δj(e1, e3) * Δj(e3, e2) * δ
⎤

⎦
⎥

0 5 10 15 20
think time [s]

(b) Step 2: merge the two transitions (e1, e2)

Fig. 5: Illustration of the think time calculation in
REMOVESTATE(Wj , e3, � ⇠ N (0.5, 1)) (Algorithm 4).

I I'

$

$'

I

$

(a) Step 1: replace e2 with Markov chain

I I'

$

$'

I

$

(b) Step 2: remove I 0 and $0 using REMOVESTATE

Fig. 6: Illustration of REPLACESTATE(Wj , e2,R0) (Algorithm 5).

Algorithm 5 Replace state e of Markov chain Wj with a
Markov chain derived from tailored requests R0

1: function REPLACESTATE(Wj = (Ej , pj ,�j ,Sj), e,R0)
2: S 0 GROUPTOSESSIONS(R0)
3: W

0 = (E 0
, ·, ·, ·) AGGREGATE(S 0)

4: Ej Ej [E 0

5: for all e0 2 Ej do
6: pj(e0, I 0) pj(e0, e)
7: �j(e0, I 0) �j(e0, e)
8: end for
9: for all e0 2 Ej do

10: pj($0, e0) pj(e, e0)
11: �j($0, e0) �j(e, e0)
12: end for
13: Ej Ej \ {e}
14: REMOVEMARKOVSTATE(Wj , I

0
, 0)

15: REMOVEMARKOVSTATE(Wj , $0, 0)
16: end function

For that, we remove the cycle by appending the think time
to all outgoing transitions from e and by normalizing the
probabilities such that they sum to 1 (lines 3-6). Then, we con-
catenate all incoming and outgoing transitions to/from e (lines
7-11). This is done in two logical steps. First, the transitions
are concatenated, e.g., (e1, e3) and (e3, e2) to (e1, e2) and
(e1, e3) and (e3, e5) to (e1, e5) (Fig. 3b). The think times are
convolved accordingly, as illustrated in Fig. 5a, furthermore
including the original state’s duration �. In the second step,
potential duplicate transitions are merged, e.g., between e1 and
e2 (Fig. 3c). The think times are convolved again, weighted by
the relative transition probabilities (Fig. 5b). Please note that
the such resulting think time deviation is not a stochastically
valid junction of the original think times. However, as the
proper junction is not a normal distribution but the workload
model requires it, this is the closest we can achieve. At least,
the think time mean will be correct.

When a state is to be replaced, a new (sub-)chain is to
be inserted instead of the original state. This is implemented
in Algorithm 5 and illustrated in Fig. 6 at the example of
replacing state e2 (see Fig. 3a). The algorithm takes as input
the Markov chain Wj , the state e to be replaced and the
tailored request logs R0 prepared in Algorithm 3. First, it
groups the request logs into session logs and aggregates them

into a new Markov chain W
0 (lines 2 and 3). Considering

request logs related to our previous example (Fig. 4b) and
assuming requests r6,· target endpoint e6 and r7 targets e7, the
new chain will contain states {I 0, e6, e7, $0}. Then, this chain
replaces e in two steps. In the first step, e (in the example e2)
is replaced by the new chain by changing the target and source
states of the transitions of e (lines 4-8; Fig. 6a). In the second
step, the artificially inserted states I 0 and $0 are removed using
Algorithm 4 (lines 13-15; Fig. 6b). As a result, the incoming
and outgoing transitions of the new chain will contain the
duration of the original request as think times.

V. EVALUATION

We evaluate the two introduced workload model tailoring
algorithms in an experiment series. We use the Sock Shop
Microservices Demo,1 because Aderaldo et al. [1] have argued
it to be representative for microservice applications. In doing
so, we address the following research questions:

RQ1 How representative are the workloads generated by
the tailored load tests compared to an untailored and
a request-based test?

The first question aims at evaluating potential differences of
the workload arriving at the microservices under test due
to the tailoring of the workload models. For measuring the
representativeness, we use a distance metric based on the
Kolmogorov-Smirnov statistic. As the goal is to generate
representative tailored tests, the difference should be small. As
baselines, we use an (untailored) system-level test generated
by WESSBAS and the request-based load tests described in
Section IV-B.

RQ2 To which degree do the tailored load tests impair the
performance metrics of the tested microservices?

Instead of evaluating the workload characteristics directly, we
compare performance metrics such as response time, CPU
utilization, and memory consumption, which are influenced
by the workload.

RQ3 How much can tailoring reduce the test execution
time until measured performance metrics are stable?

When testing a set of microservices in isolation rather than in
combination with the remainder of the application, the overall
complexity of the system is reduced. This indicates that a
shorter test duration might be feasible for reaching a certain

1https://microservices-demo.github.io/

		front-end

		catalogue

	shipping

orders 	payment

carts

user

4

4

6

1

1

214

Fig. 7: Dependencies between the Sock Shop microservices
(X = number of endpoints of the respective microservice).

stability of measured metrics compared to an untailored test.
Thus, we evaluate the ability of the tailoring approaches to
reduce the required test duration, assessed by a metric based
on the variation of measured response time medians.

RQ4 Which qualitative differences of the tailored work-
load models exist?

Finally, we analyze the qualitative differences of the log-based
and model-based tailored workload models generated during
the experiment. As they are generated differently, attributes
such as understandability and complexity can differ.

In the following, we introduce the system under test (SUT)
in more detail, present the methodology of the experiment
series, introduce the metrics used in the evaluation, present
the results, and discuss the results according to the research
questions. Finally, we discuss the threats to validity. A repli-
cation package can be found online [38].

A. System under Test
In our experiment series, we use the aforementioned Sock

Shop Microservices Demo (Sock Shop) as SUT, on which we
execute the generated load tests. The Sock Shop constitutes
a web shop that allows browsing, adding to a cart, and
purchasing. User account management is also available. The
following microservices exist (with databases for some): front-
end, catalogue, carts, orders, payment, shipping, and user. The
dependencies between the microservices are depicted in Fig. 7.
In addition to the Sock Shop itself, we utilize the open-source
monitoring systems Zipkin2 for trace collection, a Java service
converting the Zipkin traces into OPEN.xtrace [34] to allow for
monitoring tool independence, and Prometheus3 for collecting
performance metrics.

As illustrated in Fig. 8, we deploy the Sock Shop on a bare-
metal machine with 80 cores (2 threads each) at 2300 MHz,
896 GB RAM, and a magnetic disk with 15 000 rpm. Each
microservice is deployed as a Docker container with two
isolated CPU cores and 4 GB of RAM. In addition, the
machine hosts a lightweight Java service for restarting the
application remotely. Zipkin, the OPEN.xtrace converter, and
Prometheus are deployed on a second machine with 24 cores

2https://zipkin.apache.org/
3https://prometheus.io/

Zipkin

Prometheus

OPEN.xtrace
converter Sock	Shop

RestarterExperiment
Automation

		Load
		Test

1

Results

2

3

4

Fig. 8: Experiment setup for load test execution.

(2 threads each) at 2300 MHz and 32 GB RAM, connected via
a shared 10 Gbit/s network infrastructure. The second machine
also hosts the JMeter4 load tests that are executed and a script
automating the experiment (see below). JMeter has a heap size
of 512 MB, except for the untailored test, which needs 2 GB.

B. Methodology

Our evaluation consists of an experiment series in three
steps, which we describe in the following.

1) Simulate Production Workload: As representative load
testing uses production monitoring data for generating load
tests, we need to simulate production workload first. For that,
we designed a load test mimicking three different types of
users, namely users that visit products (80 users), browse
and buy products (60 users), and visit the status of their
orders (60 users). An experiment automation script executes
this load test as depicted in Fig. 8. First, it restarts the Sock
Shop to ensure that the load test is executed in a clean and
comparable environment 1 . Then, the load test is executed
2 . During the load test, the Sock Shop sends traces to Zipkin

and CPU and memory metrics to Prometheus. After the load
test has finished, the metrics and traces — via the OPEN.xtrace
converter, which retrieves the Zipkin traces — are collected 3
and stored into a results folder for later analysis 4 . In the
following, we will refer to the workload (model) of this load
test as reference workload.

2) Generate Load Tests: After the reference workload has
been executed, the collected traces are used to generate tailored
load tests by using the log-based and model-based approaches,
which we implemented as part of the ContinuITy project. The
code is available online [13]. As baselines, we also generate an
untailored (system-level) load test using the plain WESSBAS
and request-based load tests simply replaying all requests at
a rate extracted from the reference workload. We apply the
request-, log-, and model-based approaches for generating
load tests for the following combinations of microservices,
considering the dependencies shown in Fig. 7:

• catalogue — 4 endpoints
• user — 6 endpoints

4http://jmeter.apache.org/

• carts, orders, payment, shipping, user — 10 endpoints
• catalogue, user — 10 endpoints
• catalogue, carts, orders, payment, shipping, user — 14

endpoints
• catalogue, carts, user — 14 endpoints
• catalogue, carts, payment, shipping, user — 16 endpoints

Please note that we always include dependent microservices,
i.e., for the orders service, we also include carts, payment,
shipping, and user. If orders is to be tested in isolation, load-
test-ready stubs need to replace the dependent services, which
can however influence order’s performance. Therefore, we use
the actual services as ”perfect” stubs.

3) Execute Load Tests: The last step is the execution of the
generated load tests. Again, we utilize the setup depicted in
Fig. 8. The experiment automation takes care of executing all
tests for 30 minutes and restarting the Sock Shop before each
test to yield comparable results.

C. Metrics

For measuring several attributes of the experiment results,
we utilize existing and newly introduced metrics, which we
present in the following.

1) Workload Distance Metric: For measuring the repre-
sentativeness of a generated load test (RQ1), we introduce a
distance metric comparing the test’s results with the reference
workload. Even though we focus on session-based workloads
in this paper, the tailored load tests target microservices that
do not depend on sessions. Thus, we cannot use session
information in the distance metric. Instead, we use the arrival
rate of requests or rather its reciprocal, the inter-arrival time.

Given we collected two samples Xref,e and Xgen,e of
inter-arrival times for an endpoint e for the reference and
generated workload, we calculate the Kolomogorov-Smirnov
statistic De for the significance level ↵. De is a measure
for the distance of the inter-arrival time distribution for
e. The Kolmogorov-Smirnov test rejects a null hypothesis
H0 : FXgen,e(x) = FXref,e(x), if the following holds for the
critical value c(↵) [29]:

De > c(↵) ·

s
|Xref,e|+ |Xgen,e|
|Xref,e| · |Xgen,e|

Hence, we yield an aggregate measure for all endpoints E
involved in one load test by calculating the weighted average
of the De:

D :=
1

|E|
X

e2E
De ·

s
|Xref,e| · |Xgen,e|
|Xref,e|+ |Xgen,e|

2) Performance Metrics: For assessing the influence of
potentially less representative load tests, we compare per-
formance metrics (RQ2). Precisely, we analyze the response
times of the requests, the CPU utilization, and the memory
consumption during each load test. We extract the response
times from the collected traces. The CPU and memory metrics
are collected by Prometheus in 5 second granularity.

●

● ●
● ●● ●

0.0

c(α)
2.5

5.0

7.5

10

4 8 12 16
#endpoints

D

type ● untailored request−based log−based model−based

Fig. 9: Aggregated Kolmogorov-Smirnov statistic D.

3) Test Duration Metric: For measuring the test duration
that is required for reliable results (RQ3), we base on the
performance metrics. Presuming a steady-state load, aggregate
measures such as the median response time at test end are of
interest. Therefore, we determine the required test duration by
comparing the median response time calculated at a certain
time stamp with the final value. Given a sample of median
response times (x(e)

1 , . . . , x
(e)
n) per second for endpoint e,

we calculate the distance to the finally determined median
response time x

(e)
n at index i:

ex(e)
i :=

|x(e)
i � x

(e)
n |

x
(e)
n

Then, we define the required test duration for � = 0.01 and
tested endpoints E as

max
e2E

⇣
min{i | 8j � i : ex(e)

j �}
⌘

D. Results
In this section, we present the results of the experiment,

separated by research question. For convenience, we denote
the load tests transformed from a workload model by the used
tailoring approach, e.g., log-based load test or untailored load
test.

1) Representativeness: For assessing the representativeness
of the executed load tests, we calculate the distance metric
D for each of them. In addition, we distinguish between the
number of endpoints involved in the load test, because we
expect it to influence D. The resulting values including the
convex hull per tailoring approach and a line for the critical
value c(↵) = 1.36 [29] for ↵ = 0.05 are shown in Fig. 9. It can
be seen that mostly all values are greater than c(↵), indicating
a significant difference. However, for our approaches, D is
only slightly greater than for the untailored test, but clearly
less than for the request-based tests, which increase D by a
factor between 3.57 and 9.22 compared to the untailored test.

In general, the model-based load tests generate more repre-
sentative results — they increase the distance by a factor in the
range of 1.02 to 1.86— than the log-based tests with factors
between 1.42 and 3.46. However, the log-based approach

●−0.50−0.250.000.250.50
−0.50 −0.25 0.00 0.25 0.50

0

0
type ● untailored request−based log−based model−based

●●●
●●●
●●●
●●
●●
●●
●●●
●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●
● ●●●●●

●
●
●

●

●

0

2

4

6

0 1 2 3
reference

ge
ne
ra
te
d

(a) catalogue GET /catalogue/size

●●●
●●●
●●●
●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●
●●●
●●●

●●●
●●
●
● ●

●
● ●

●

●

0

5

10

15

0 10 20 30 40
reference

(b) orders POST /orders

Fig. 10: Q-Q plots of the inter-arrival times compared to the
reference workload for different endpoints.

becomes better with an increased number of endpoints, while
the model-based approach has a slight but ambiguous upward
trend. When testing 16 endpoints, the difference between the
two approaches is negligible.

For investigating the difference of the inter-arrival time
distributions in more detail, we investigate quantile-quantile
(Q-Q) plots (Fig. 10). For shorter inter-arrival times, e.g.,
in case of the GET /catalogue/size endpoint when testing
the catalogue microservice individually (4 endpoints), it can
be seen that the request-based test has a clearly different
distribution than the reference test. The other generated tests
are close to the reference test. For longer inter-arrival times
such as the POST /orders endpoint measured when testing the
orders microservice in combination with the dependent ones,
the tail of all distributions is different than the one of the
reference test. However, the tails of the untailored, log-based,
and model-based tests appear similar.

2) Performance Metrics: Table II provides a summary of
t-tests and Cohen’s d applied to the response times, CPU
utilization, and the change of used memory per second.
Each t-test compares the measurements of a tailored test
with the untailored one with H0 : FX(x) = F0(x) and
HA : FX(x) 6= F0(x). The numbers count the occurrence
of a certain combination of a significant difference detected
by the t-test and an effect size. For all metrics, there are
cases where H0 is rejected and others in which no significant
difference is detected. The most differences — including larger
effect sizes — are detected in the CPU utilization, which can be
attributed to the naturally large fluctuation of this metric. For
the response times and the memory, the most frequent effect
size is negligible. Between the three tailoring approaches, no
clear difference can be seen, even though for the response
times, there are more cases with a significant difference for
the request-based test.

3) Required Test Duration: Fig. 11 shows the test duration
required until the final median response time is reached
except for an error of 1% in relation to the number of
tested endpoints. We use the untailored test as a baseline and
include the convex hull for illustrating the overall relation.

TABLE II: Summary of the Statistical Tests

t-test not sign. sign. sign. sign. sign.
Cohen’s d negligible negligible small medium large

response time

request-based 19 31 24
log-based 28 20 26
model-based 29 23 22

CPU utilization

request-based 7 7 7 28
log-based 12 6 9 22
model-based 9 8 7 25

memory change per second

request-based 38 3 8
log-based 33 10 6
model-based 36 8 5

0

5

10

15

20

25

4 8 12 16
#endpoints

re
qu

ire
d

du
ra

tio
n

[m
in

]

type untailored request−based log−based model−based

Fig. 11: Required test duration per number of tested endpoints
and test type.

We calculate the duration based on the response times of the
tested endpoints, i.e., for the untailored test, we consider the
endpoints of the front-end service, while we use the endpoints
of the respective microservices for the tailored tests. It can be
seen in the figure that the untailored test requires the longest
execution time with 24.2 minutes, except for the log-based
test for one service combination (catalogue, carts, orders, pay-
ment, shipping, user), which needs 24.33 minutes. In general,
less endpoints under test reduce the required test duration.
The shortest duration of 4.33 minutes could be reached by
the request-based test for the catalogue and user service
(10 endpoints), followed by the log-based test for the user
service (6 endpoints) with 4.62 minutes. Furthermore, among
the tailoring approaches, the request-based approach tends to
require the shortest duration while the model-based approach
requires the longest duration. However, the difference becomes
small for an increasing amount of endpoints.

4) Qualitative Differences: Analyzing the behavior model
that have been generated during the experiment series, we
identify thee major differences between the log-based and the
model-based tailoring approaches. First, the number of Markov
chains (behavior models) is different: while the model-based
algorithm reuses the Markov chains generated by the untai-

lored approach — which are five in our case — the log-based
approach generated five chains, too, but only three for the users
microservice tested in isolation. Hence, the clustering of the
session logs is different. In general, even though the number
of Markov chains is equal for most of the tests, it cannot be
assumed that the clustering is equal.

The second difference is the number of states of each
Markov chain. The log-based approach always has as many
states as the number of endpoints involved in the test. In
contrast to that, the model-based approach can have more
endpoints. For instance, the user GET /customers/id endpoint
is used in the replacements of the GET /customers/id and
POST /orders endpoints of the front-end microservice. Hence,
it occurs two times in the tailored Markov chain. In our
experiments, the chains of the model-based tests have between
25% and 50% (34% on average) more states than the log-
based approach.

Finally, the states of the model-based tailored Markov
chains correspond to states of the untailored chains. By track-
ing the origin of each state — e.g., we keep the original state’s
name in the name of the new state — this relationship allows
for analyzing and changing the Markov chain based on end
user behavior, e.g., removing a certain end user request due
to a changed API. In contrast to that, the session logs tailored
by the log-based algorithm are newly created by clustering,
resulting in completely different Markov chains.

E. Discussion
In the following, we discuss the research questions defined

in the beginning of this section based on the results. For each
research question, we highlight the key message in a box.
1) Representativeness — RQ1:

Our introduced tailoring approaches slightly reduce the
representativeness compared to an untailored load test, but
significantly increase it compared to a simple request-based
load test. The log-based load tests are less representative
than the model-based tests, but become increasingly rep-
resentative with more tested endpoints.

The reduction of the representativeness is reflected in the ag-
gregated Kolmogorov-Smirnov statistic D, which is however
only slightly higher than for the untailored test. In contrast
to that, the request-based approach is more than two times
less representative. We attribute this finding to the following.
In the model-based approach, we merge state transitions of
the Markov chains. Because the workload model is based
on normal distributions, we need to convolve the think time
distributions into another normal distribution (see Fig. 5b),
which is an improper operation. While the mean think time
remains correct, the variance and distribution function is
impaired. Hence, the think time between two requests can be
different than in the untailored load test, which influenes the
inter-arrival times.

In the log-based approach, all applied operations are valid.
However, the session logs that are clustered after the tailoring

are different than without tailoring. Thus, the clustering can be
different, resulting in different Markov chains. This reasoning
is underlined by the fact that the log-based load test for the
user microservice has only three chains while the untailored
test has five. For a larger number of tested endpoints, the
difference in the Markov chains appears to be less critical.
2) Performance Metrics — RQ2:

The performance metrics support the findings of RQ1:
there are small differences between the tailored load tests
and the untailored one. However, the larger differences of
the request-based tests are not reflected.

This was identified by t-tests and Cohen’s d. The fact that
the request-based tests do not clearly entail more different
performance metrics might stem from the fact that the average
number of requests per endpoint and per second is the same
as in all other tests. This might lead to a very similar behavior
of the Sock Shop. Regardless of that, these findings do not
falsify the conclusion made for RQ1, but rather support it.
3) Required Test Duration — RQ3:

A larger number of tested endpoints requires a longer test
duration. For a small number of endpoints, the request-
and log-based approaches require the shortest durations,
but this is at the expense of representativeness, especially
for the request-based approach.

We can derive this finding from the calculated test duration
metrics, but also need to take into account that there can
be individual endpoints that require a longer duration. For
instance, the POST /orders endpoint of the orders service
required between 22.42 and 24.33 minutes while the GET
/customers/ endpoint of the user service required only between
8 seconds and 4.97 minutes. This finding indicates that the
longer duration is not only due to the sheer number of
endpoints, but also to the higher likelihood to include an
endpoint requiring the longer duration.

In addition, we would like to highlight that the tailoring
approaches can only reduce the test duration from the per-
spective of all tested microservices. If only a certain set of
microservices, e.g., user, is considered to determine the test
duration also in the untailored test, the tailoring approaches
cannot reduce it without impairing the representativeness, as
it would require the workload arriving at user to be changed.
In contrast to that, the tailoring approaches can always save
resources, because only the tested microservices including
its dependents need to be deployed. By combining them
with stubbing approaches [6], [4], [19], [40], the dependent
microservices can be removed from the deployment as well.

Concluding, the fewer services are included in a load test,
the more resources can be saved by only deploying the tested
services and potentially stopping the test after a shorter time.
For that, we suggest using existing approaches [2].

4) Qualitative Differences — RQ4:

The model-based tailoring approach generates Markov
chains with states that correlate with end user requests
and thus, can better explain the effect of the end user’s
behavior. In contrast to that, the log-based approach does
not allow for such analyses. As a drawback, the model-
based approach generates Markov chains with 36% more
states in average.

Even though the sizes of the Markov chains in our ex-
periment are not critical, it can become memory-critical for
large-scale applications. Furthermore, duplicated states hinder
manual maintainability. However, as the Markov chains are
generated automatically and not meant to be changed manually
in the first place, this drawback is less relevant. Therefore, our
results indicate that the model-based approach is preferable
over the log-based approach regarding qualitative attributes.

F. Threats to Validity

We identify the following threats to the validity of our work.
1) Conclusion Validity: In the analysis of the performance

metrics, we applied the t-test for detecting significant dif-
ferences between the tailored and untailored tests. These
metrics are not necessarily normally distributed, which is an
assumption of the t-test. However, as the sample sizes are large
with at least 305 entries, the t-test can be used according to
the central limit theorem.

Furthermore, performance metrics such as CPU utilization
can be fluctuating and thus, unreliable in general. Therefore,
the conclusions we have drawn are based on a combination of
several performance metrics and also workload metrics.

2) Internal Validity: Our evaluation consists of a series
of experiments, which were executed automatically in a se-
quence. For preventing influences of former test executions,
the tested Sock Shop application and the JMeter load driver
have been restarted before each execution, including a com-
pletely new deployment of the Sock Shop. For preventing
interactions between microservices running in parallel, we
applied CPU pinning and memory reservation.

Another potential threat is that the metrics measured during
the reference workload appeared to bear small inconsistencies.
This manifested with the steady increase of the response times
of the carts microservice. During all generated load tests, no
such effect could be observed. Hence, the comparison to the
reference test is impaired. However, as the input, i.e., the
request logs, for all workload model generation approaches
was the same, we presume no side effects regarding the
comparability among these tests. Also, we could not detect any
trends in the request rates of the reference workload, justifying
the steady-state execution of the generated load tests.

3) Construct Validity: In this paper, we assume normally
distributed think times in the Markov chains modeling the
workload. In general, think times do not need to be normally
distributed and workload modeling languages such as the
WESSBAS DSL allow for different distribution functions as

well. We chose the normal distribution, because it is commonly
used in related works. Evaluating other distribution functions
is left for future work.

4) External Validity: As the Sock Shop is not an industrial
application, it is questionable whether it can represent real-
world microservice applications. However, we base on an
existing study, which assessed the Sock Shop to be repre-
sentative [1]. In future work, we plan to evaluate the tailoring
algorithms with another industrial application.

VI. CONCLUSION

In this paper, we presented two algorithms — log-based and
model-based tailoring — for generating microservice-tailored
workload models for load testing. In contrast to existing
approaches for representative workload model generation [30],
[36], [39], [41], such tailored workload models allow to test
a certain subset of all microservices of an application in
isolation. Hence, with regard to independent microservice
development teams, each development team can test their
service without deploying the whole application. Services that
are not affected by the test will not be deployed, saving the
resources required to run the test. In addition, our approach
is automated, in order to simplify an implementation into a
continuous delivery pipeline.

Our experimental evaluation with a microservice application
showed that the proposed algorithms do not only allow for
resource-efficient load testing, but also generate more rep-
resentative workload than a simple request-based workload
model. Furthermore, they could reduce the required test ex-
ecution time compared to a system-level test, especially for
combinations of microservices under test with a low number of
endpoints. The model-based approach appeared to outperform
the log-based approach concerning representativeness and un-
derstandability of the generated workload models, even though
the log-based approach became better for larger numbers of
tested endpoints.

For future work, we are going to apply the tailoring algo-
rithms to industrial microservice applications. Furthermore, we
suggest evaluating other distribution functions for modeling
the think times, as they appeared to bear limitations for the
model-based tailoring. The WESSBAS DSL allows for that
in general, even though we based on the commonly used
normal distributions in this paper. Finally, it is of interest to
investigate the load tests tailored with the proposed algorithms
in combination with their natural complement of performance
stubs. In doing so, a full isolation of one microservice from
the remainder of the application can be achieved.

VII. ACKNOWLEDGEMENTS

This work is being supported by the German Federal
Ministry of Education and Research (grant no. 01IS17010,
ContinuITy) and the European Union’s Horizon 2020 research
and innovation programme (grant no. 825040, RADON). The
authors would like to thank the HPI Future SOC Lab for
providing the infrastructure.

REFERENCES

[1] Aderaldo, C.M., Mendonça, N.C., Pahl, C., Jamshidi, P.: Bench-
mark requirements for microservices architecture research. In: 1st
IEEE/ACM International Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based Software Engineering. pp.
8–13. ECASE@ICSE (2017)

[2] Alghmadi, H.M., Syer, M.D., Shang, W., Hassan, A.E.: An automated
approach for recommending when to stop performance tests. In: Pro-
ceedings of the 32nd IEEE International Conference on Software Main-
tenance and Evolution (ICSME 2016). pp. 279–289. IEEE Computer
Society (2016)

[3] Avritzer, A., Ferme, V., Janes, A., Russo, B., Schulz, H., van Hoorn, A.:
A quantitative approach for the assessment of microservice architecture
deployment alternatives by automated performance testing. In: Software
Architecture - 12th European Conference on Software Architecture
(ECSA 2018). pp. 159–174 (2018)

[4] Baltas, N., Field, T.: Continuous Performance Testing in Virtual Time.
In: Proceedings of the 9th International Conference on Quantitative
Evaluation of Systems (QEST 2012). pp. 13–22. IEEE Computer Society
(2012)

[5] Barford, P., Crovella, M.: Generating representative web workloads for
network and server performance evaluation. In: Proceedings of the 1998
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems (SIGMETRICS/PERFORMANCE ’98).
pp. 151–160 (1998)

[6] Becker, S., Dencker, T., Happe, J.: Model-driven generation of perfor-
mance prototypes. In: Performance Evaluation: Metrics, Models and
Benchmarks. pp. 79–98 (2008)

[7] Becker, S., Koziolek, H., Reussner, R.: The palladio component model
for model-driven performance prediction. J. Syst. Softw. 82(1), 3–22
(2009)

[8] Bernardo, M., Cortellessa, V., Flamminj, M.: TwoEagles: A model
transformation tool from architectural descriptions to queueing networks.
In: Proceedings of the 8th European Performance Engineering Workshop
(EPEW 2011). Lecture Notes in Computer Science, vol. 6977, pp. 265–
279. Springer (2011)

[9] Black, R., Van Veenendaal, E., Graham, D.: Foundations of Software
Testing—ISTQB Certification. Cengage Learning EMEA, 3rd edn.
(2012)

[10] Cai, Y., Grundy, J.C., Hosking, J.G.: Synthesizing client load models
for performance engineering via web crawling. In: Proc. ASE 2007. pp.
353–362 (2007)

[11] Calzarossa, M.C., Massari, L., Tessera, D.: Workload characterization:
A survey revisited. ACM Computing Surveys 48(3), 48:1–48:43 (2016)

[12] Cohn, M.: Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley Professional (2009)

[13] ContinuITy Project: ContinuITy (2019), https://github.com/
ContinuITy-Project/ContinuITy, accessed: 2019-05-27

[14] Cortellessa, V., Mirandola, R.: Deriving a queueing network based
performance model from UML diagrams. In: Workshop on Software
and Performance. pp. 58–70 (2000)

[15] Cortellessa, V., Mirandola, R.: PRIMA-UML: A performance validation
incremental methodology on early UML diagrams 44(1), 101–129
(2002)

[16] Denning, P.J., Buzen, J.P.: The operational analysis of queueing network
models. ACM Comput. Surv. 10(3), 225–261 (1978)

[17] Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., Weber, G.: Realistic
load testing ofweb applications. In: Proceedings of the Conference on
Software Maintenance and Reengineering. pp. 57–70. CSMR ’06 (2006)

[18] Ferrari, D.: On the foundations of artificial workload design. SIGMET-
RICS Perform. Eval. Rev. 12(3), 8–14 (1984)

[19] Field, T., Chatley, R., Wei, D.: Software performance testing in virtual
time. In: Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering. pp. 173–174. ICPE ’18 (2018)

[20] Goseva-Popstojanova, K., Singh, A.D., Mazimdar, S., Li, F.: Empiri-
cal characterization of session-based workload and reliability for web
servers 11(1), 71–117 (2006)

[21] Graf, I.M.: Transformation Between Different Levels of Workload
Characterization for Capacity Planning. In: Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 1987). pp. 195–204. ACM (1987)

[22] Hildebrandt, S.: Analysis 1. Springer Berlin Heidelberg, 2nd edn.

[23] Horký, V., Libič, P., Marek, L., Steinhauser, A., Tůma, P.: Utilizing
performance unit tests to increase performance awareness. In: Proceed-
ings of the 6th ACM/SPEC International Conference on Performance
Engineering. pp. 289–300. ICPE ’15 (2015)

[24] Jiang, Z.M., Hassan, A.E.: A survey on load testing of large-scale
software systems. IEEE Trans. Software Eng. 41(11), 1091–1118 (2015)

[25] Kazmi, R., Jawawi, D.N.A., Mohamad, R., Ghani, I.: Effective regres-
sion test case selection: A systematic literature review. ACM Comput.
Surv. 50(2), 29:1–29:32 (2017)

[26] v. Kistowski, J., Herbst, N., Kounev, S.: Limbo: A tool for modeling
variable load intensities. In: Proceedings of the 5th ACM/SPEC Inter-
national Conference on Performance Engineering. pp. 225–226. ICPE
’14 (2014)

[27] Koziolek, H., Reussner, R.H.: A model transformation from the Palladio
Component Model to layered queueing networks. In: Proceedings of the
SPEC International Performance Evaluation Workshop (SIPEW 2008).
Lecture Notes in Computer Science, vol. 5119, pp. 58–78 (2008)

[28] Lyu, M.R. (ed.): Handbook of Software Reliability Engineering.
McGraw-Hill, Inc. (1996)

[29] Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American Statistical Association 46, 68–78

[30] Menascé, D.A., Almeida, V.A.F.: Capacity Planning for Web Services:
Metrics, Models and Methods. Prentice Hall (2002)

[31] Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for
Engineers. John Wiley & Sons, Inc., 3rd edn. (2003)

[32] Musa, J.D.: Operational profiles in software-reliability engineering
10(2), 14–32 (1993)

[33] Newman, S.: Building Microservices—Designing Fine-Grained Sys-
tems. O’Reilly Media (2015)

[34] Okanović, D., van Hoorn, A., Heger, C., Wert, A., Siegl, S.: Towards
performance tooling interoperability: An open format for representing
execution traces. In: Proceedings of the 13th European Workshop on
Computer Performance Engineering (EPEW 2016). pp. 94–108 (2016)

[35] Pietrantuono, R., Russo, S., Guerriero, A.: Run-time reliability estima-
tion of microservice architectures. In: 2018 IEEE 29th International
Symposium on Software Reliability Engineering (ISSRE). pp. 25–35
(2018)

[36] Ruffo, G., Schifanella, R., Sereno, M., Politi, R.: Walty: a user behavior
tailored tool for evaluating web application performance. In: Proceedings
of the 3rd IEEE International Symposium on Network Computing and
Applications,. pp. 77–86 (2004)

[37] Schulz, H., Angerstein, T., van Hoorn, A.: Towards automating represen-
tative load testing in continuous software engineering. In: Companion
of the 2018 ACM/SPEC International Conference on Performance
Engineering. pp. 123–126. ICPE (2018)

[38] Schulz, H., Angerstein, T., Okanović, D., van Hoorn, A.: Replication
package: Microservice-tailored generation of session-based workload
models for representative load testing (2019), https://doi.org/10.5281/
zenodo.3333367

[39] Shams, M., Krishnamurthy, D., Far, B.H.: A model-based approach for
testing the performance of web applications. In: Proc. SOQUA 2006
(2006)

[40] Versteeg, S., Du, M., Schneider, J.G., Grundy, J., Han, J., Goyal, M.:
Opaque service virtualisation: A practical tool for emulating endpoint
systems. In: Proceedings of the 38th International Conference on Soft-
ware Engineering (ICSE 2016). pp. 202–211 (2016)

[41] Vögele, C., van Hoorn, A., Schulz, E., Hasselbring, W., Krcmar,
H.: WESSBAS: extraction of probabilistic workload specifications for
load testing and performance prediction - a model-driven approach
for session-based application systems. Software and System Modeling
17(2), 443–477 (2018)

[42] Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE
Software 33(3), 32–34 (2016)

https://github.com/ContinuITy-Project/ContinuITy
https://github.com/ContinuITy-Project/ContinuITy
https://doi.org/10.5281/zenodo.3333367
https://doi.org/10.5281/zenodo.3333367

	Introduction
	Background and Problem Statement
	Related Work
	Workload Model Tailoring
	Notations
	Overview of Tailoring Approaches
	Log-based Tailoring
	Model-based Tailoring

	Evaluation
	System under Test
	Methodology
	Simulate Production Workload
	Generate Load Tests
	Execute Load Tests

	Metrics
	Workload Distance Metric
	Performance Metrics
	Test Duration Metric

	Results
	Representativeness
	Performance Metrics
	Required Test Duration
	Qualitative Differences

	Discussion
	Representativeness—RQ1
	Performance Metrics—RQ2
	Required Test Duration—RQ3
	Qualitative Differences—RQ4

	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	Acknowledgements
	References

