
cba

Herausgeber et al. (Hrsg.): Software Engineering 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 11

Representative Load Testing in Continuous Software
Engineering: Automation and Maintenance Support

Henning Schulz1, André van Hoorn2

Abstract: This extended abstract summarizes our work on reducing the maintenance effort for the
parameterization of representative load tests using annotations, which we have published in the Journal
of Software Testing, Verification & Reliability in 2019 [SHW19].

Representative load testing [JH15] can effectively test and preserve the performance before
delivery by mimicking the expected workload. However, it also requires a notable amount
of expertise and effort for creating, maintaining, and executing the load test. During load
test creation, experts need to take care of different workload scenarios occurring in the
production system, which the test needs to replay. Maintenance tasks comprise updating the
test due to changing workloads and APIs of the system under test (SUT).

For easing representative load testing and reducing its effort, we aim at automatically
generating tailored representative load tests [SAH18]. Based on an expert’s request and
continuously recorded monitoring data, our approach generates a load test tailored to a
particular service and replaying a particular workload observed in production. However,
while we can leverage existing approaches for extracting the workload model automatically,
generating a load test also requires proper parameterization — e.g., specifying credentials
for the simulated users that are valid in the test environment — typically entailing manual
effort. The manual effort accumulates if the expert generates multiple load tests or if the
workload or APIs change. In the context of continuous software engineering, such manual
effort prevents the integration into the highly-automated build and delivery infrastructure.

Therefore, our approach reduces the manual effort for parameterization and completely
automates the test generation [SHW19]. As shown in Fig. 1, instead of parameterizing a
load test directly, an expert can define all parameterizations in a separate model: the input
data and properties annotation (IDPA) (1). Leveraging API specifications, our approach can
generate and update parts of an IDPA automatically (2). Also, we provide mechanisms for
evolving an IDPA over API changes. Hence, the expert can maintain the IDPA and store it
at a central place such as the code repository (3). The application running in production and
being used by the end-users collects the user’s requests and sessions and stores them into a
measurement repository (4). Hence, when a new load test is to be generated — e.g., inside
a continuous integration and delivery (CI/CD) pipeline — our approach can retrieve an
up-to-date IDPA and measurement data (5). It extracts a workload model — e.g., replaying
1 Novatec Consulting GmbH, Karlsruhe, Germany, henning.schulz@novatec-gmbh.de
2 University of Stuttgart, Stuttgart, Germany, van.hoorn@informatik.uni-stuttgart.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:henning.schulz@novatec-gmbh.de
mailto:van.hoorn@informatik.uni-stuttgart.de


12 Henning Schulz, André van Hoorn

Running 
Application

User Sessions/Requests Load Test

IDPA

CI/CD Pipeline

IDPA

Code Repository

Measurement Repository

IDPA

API 
Spec.

Local Environment

Code

(1)

(2)

(3)

(4)

(5) (6)

Fig. 1: Overview of the load test parameterization process using IDPAs [SHW19].

the recently typical workload — from the user sessions and requests, transforms it to a load
test, and parameterizes it using the IDPA (6). Finally, the pipeline can automatically execute
the generated load test without manual intervention.

Our evaluation, consisting of two experimental studies, effort estimation models, and
an industrial case study, shows the applicability of our approach. Given the workload
is dominated by the order and rate of the requests rather than the input data, it restores
the representativeness of generated load tests while it reduces the manual effort from a
quadratic to a linear function of time. Details on the evaluation are presented in the original
article [SHW19]. The evaluation artifacts and a demo are provided online.3

Acknowledgement This work is part of the ContinuITy4 project, which is supported by
the German Federal Ministry of Education and Research (grant no. 01IS17010).

References

[JH15] Jiang, Z. M.; Hassan, A. E.: A Survey on Load Testing of Large-Scale Software
Systems. IEEE Trans. on Softw. Eng. 41/11, pp. 1091–1118, 2015.

[SAH18] Schulz, H.; Angerstein, T.; van Hoorn, A.: Towards Automating Representative
Load Testing in Continuous Software Engineering. In: Proc. ACM/SPEC
International Conference on Performance Engineering (ICPE 2018) Companion.
ACM, pp. 123–126, 2018.

[SHW19] Schulz, H.; van Hoorn, A.; Wert, A.: Reducing the Maintenance Effort for
Parameterization of Representative Load Tests Using Annotations. Software
Testing, Verification & Reliability/, in press (early preview status), 2019.

3 Artifacts: https://doi.org/10.5281/zenodo.3255389, demo: https://doi.org/10.5281/zenodo.2647976
4 ContinuITy web site: https://continuity-project.github.io/

https://doi.org/10.5281/zenodo.3255389
https://doi.org/10.5281/zenodo.2647976
https://continuity-project.github.io/

