
Concern-driven Reporting of
Software Performance Analysis Results

Dušan Okanović, André van Hoorn,
Christoph Zorn

University of Stuttgart, Germany

Fabian Beck
University of Duisburg-Essen, Germany

Vincenzo Ferme
Kiratech S.p.A., Paradiso (Lugano), Switzerland∗

Jürgen Walter
University of Würzburg, Germany

ABSTRACT
State-of-the-art approaches for reporting performance analysis re-
sults rely on charts providing insights on the performance of the
system, often organized in dashboards. The insights are usually
data-driven, i.e., not directly connected to the performance concern
leading the users to execute the performance engineering activity,
thus limiting the understandability of the provided result. A cause
is that the data is presented without further explanations.

To solve this problem, we propose a concern-driven approach
for reporting of performance evaluation results, shaped around
a performance concern stated by a stakeholder and captured by
state-of-the-art declarative performance engineering specifications.
Starting from the available performance analysis, the approach
automatically generates a customized performance report provid-
ing a chart- and natural-language-based answer to the concern.
In this paper, we introduce the general concept of concern-driven
performance analysis reporting and present a first prototype im-
plementation of the approach. We envision that, by applying our
approach, reports tailored to user concerns reduce the effort to
analyze performance evaluation results.
ACM Reference Format:
Dušan Okanović, André van Hoorn, Christoph Zorn, Fabian Beck, Vincenzo
Ferme, and Jürgen Walter. 2019. Concern-driven Reporting of Software
Performance Analysis Results. In Tenth ACM/SPEC International Conference
on Performance Engineering Companion (ICPE ’19 Companion), April 7–11,
2019, Mumbai, India. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3302541.3313103

1 INTRODUCTION
Performance engineering approaches for prediction, profiling, and
load testing provide powerful tools for developers and operations
specialists to investigate timing- and resource-related runtime prop-
erties of software systems. The recorded data and derived findings
are often complex and large. While existing tools provide some
support for data analysis and report on potential problems, a con-
siderable amount of work, requiring detailed domain knowledge,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6286-3/19/04. . . $15.00
https://doi.org/10.1145/3302541.3313103

is left to be done manually (e.g., creating dashboards, extracting
information from performance data). Various performance visual-
ization approaches [9] can explain complex data and relationships
between analysis results, and thereby make the manual process
more effective and efficient. Still, current analysis approaches and
visualizations are limited in providing an actionable answer to
the users, because they do not consider the users’ concern when
selecting presentation techniques to be used. Moreover, the major-
ity of approaches does not explain the complex data and findings
shown in lists, tables, and visualizations. This makes performance
engineering approaches hard to access and leverage, especially for
people who only occasionally deal with performance-related issues.

Building on the vision of Declarative Performance Engineering
(DPE) [20], the stakeholders (e.g., service developers, providers)
should be able to state their concerns of interest in a declarative
manner, while not necessarily being aware of the approaches used
to analyze and to provide answers. In systems and software engi-
neering, a concern is defined as an “interest in a system relevant to
one or more of its stakeholders” and it “pertains to any influence on
a system in its environment, including developmental, technological,
business, operational, (...) influences” [1]. For example, a performance
concern might be “What is the response time of the software I am
developing?” To answer this, a common approach is to perform
load-testing [10], that is, applying a production(-like) workload
on the system that is being tested in order to assess its behavior.
After the load test is executed, the data is provided in the form
of tables and charts, from which the user can deduce what is the
answer. However, the user needs to know which method or tool is
appropriate for the analysis, and then how to formulate the concern
using the available language of the chosen tool. Hence, a declar-
ative approach is needed, which i) abstracts the underlying tools
from the user, allowing for stating of performance-related concerns,
and ii) provides comprehensible results tailored to these concerns.
Especially non-experts in performance engineering would benefit
from interfaces that can help in easier stating of their concerns, as
well as from tailored presentations explaining the results.

In this paper, we propose the concept of concern-driven report-
ing of performance analysis results (Section 2): Users can declare
a concern using natural language. Based on the stated concern,
automated methods of performance engineering are used to ana-
lyze available data and provide results. The approach automatically
generates a report that includes visualization of data, and an expla-
nation of the results using natural language. To demonstrate our

*This work was done at the University of Stuttgart.

https://doi.org/10.1145/3302541.3313103
https://doi.org/10.1145/3302541.3313103
https://doi.org/10.1145/3302541.3313103

Performance
Analysis

Filtering
the Data

Refine the
Concern

Report
Generation

Choosing
Presentation
Techniques

Performance
Concern

Data Filtered
Data

No Yes
Data

Exists?

Figure 1: Control flow for the concern-driven reporting.

Analysis
Method 1

User Concern 2

Analysis
Method 2

Vizard

Result 1 Result 2

Report 2
A text B.
Text C. ...

User Concern 1

Report 1
A text text B,
C, text...

1 A text text B: C.
2 A text B. Text C.
... ...

Text templates
Visualization
techniques

 ...

Figure 2: An illustration of the concern-driven software per-
formance reporting.

approach, we present our proof-of-concept implementation, the
Vizard tool, focusing on few specific types of performance concerns,
but implementing all parts of the concept (Section 3). We believe
that such tailoring of performance analysis reports to include only
the data relevant to answer the stated concern is of major impor-
tance, because the amount of data provided in current approaches
can be overwhelming and counterproductive.

2 CONCERN-DRIVEN PERFORMANCE
REPORTING

An overview of our concern-driven report generation is provided
in Figure 1. The process starts with the stakeholder stating a per-
formance concern. Based on this concern, a performance analysis
tool provides a result, including the relevant performance data. In
this step, we rely on the support from Declarative Performance
Engineering (DPE) [19] to select a tool or a list of suitable tools to

perform the analysis. Performance analysis can require running
an experiment (e.g., profiling, load testing) or performance predic-
tion using model-based approaches. The interaction between our
approach and underlying tools requires an abstraction layer to trans-
late concerns into configurations, used by the selected tools. To col-
lect the data, we rely on the approaches such as OPEN.xtrace [14].

As discussed before, the amount of data can be large, and there-
fore hard to grasp. To tackle this, data filtering ensures that only
the data from the analysis result that is directly related to the stated
concern is included in the report. After that, the report is generated,
using presentation techniques that were, again, chosen based on the
stated concern. If needed, the data that was filtered out from the
report can also be made available to the user upon request. The user
can further refine the concern, and a new report is generated based
on the existing data (available immediately) or new data (available
after another execution of the performance analysis of choice).

In Figure 2, we show how we envision the report generation in
our approach. A central component is the Vizard, which has three
responsibilities. First, it has to choose visualization techniques to be
used in the report, filtering and adjusting to the available data and
the stated concern. In performance engineering, data is collected
over time and is usually visualized as a time series in a line chart.
To represent communication between components in software (on
different levels of abstraction andwith different granularity), graphs
and hierarchies can be used. Additionally, if source code of the
analyzed software is available during analysis, it can be used as
(simple or decorated) text, e.g., to show the developer where and
how to apply the fix. We plan to employ the classification by Isaacs
et al. [9] to select the visualization based on the origin of data (e.g.,
hardware, software), type of the data (e.g., time series, execution
traces), and stated concerns (e.g., “What is the maximum number of
users that can be handled?”, “What is the bottleneck?”, “What is the
root-cause of response time increase?”) and manifest it in a rule-based
selection mechanism.

The second task is to generate a natural language description
of the results. We plan to use natural language generation [6] and
rely on template-based natural language generation techniques. We
prepare templates related to different visualizations and concerns,
then fill in the template according to the concern and the available
performance data.

The last step is to combine generated visualizations and language
description into tailored reports. For this, we plan to define differ-
ent widget-like components realized by one or more charts, and
a generated text description. We then define customized reports
according to different user’s concern supported by our approach.
These components can be reused and filled in according to the
available data and the given user’s concern.

Figure 3: Creating a concern in the prototype implementation.

3 VIZARD TOOL
In this section, we present our preliminary work on the Vizard tool,
which implements the main ideas of the approach. Our prototype
implementation consists of a) a concern specification and b) a report
generation.

Concern specification. To specify the concern, a user can first
select an example which will serve as a template for specifying
concerns. The current version supports specifying concerns typical
for load testing, but we plan to extend it to other software perfor-
mance analysis methods. Concern specification involves dragging
parameters from categories into blank fields of the chosen tem-
plate (Figure 3). After the query is created, the user can choose
which (appropriate) performance analysis method should be used.
Currently, only the load testing with JMeter1 or Locust2 is imple-
mented. Based on the example from the introduction (“What is the
maximum latency of a software service with 1000 active users?”), we
will use JMeter to provide us with data for the report. Depending
on the level of expertise, users can enter additional details about
the experiment. For non-expert users, default values are provided.
For performance experts with the knowledge of JMeter, it is possi-
ble to directly edit the script file to be used. When the concern is
specified, the user can download the script file and use it to run the
experiment. In the future, we plan to automate this process using
the DPE tooling [17].

Report generation. The results of the experiment and the stated
concern are uploaded to the report generation tool. Based on the
results, the tool will provide generated text with details on the
experiment (Figure 4a), an answer in a natural-language form (Fig-
ure 4b), as well as the most important data to support the claims in
it (Figure 4c). For the data, we provide an explanation what each
shown metric represents and how it influences the performance.

The user can now analyze the report and interact with it. To
support the “Refine the Concern” connection from Figure 1, we
allow the user to change the concern. If the available data can be
used to answer this new concern, the report will be updated with a
new answer. Visualizations in the report are also interactive, i.e., the
user can inspect particular values or change observation intervals.

For inexperienced users, we also provide help by adding links to
explanations of some performance analysis terms, as can be seen
in Figure 4a. These links are a part of the report template.

4 RELATEDWORK
An overview of the state-of-the-art of (both open-source and com-
mercial) application performance management (APM) tools [7, 8]
shows that these tools provide visualization of collected data. The
data is presented using numeric values, time-series charts, or node-
link diagrams. However, a significant effort has to be invested to
set up dashboards that will provide an overview of the systems’
performance, and allow for detection and diagnosis of problems.3 It
is often left to the user to manually make sense of the available data
and to find the root causes of performance problems, although some
1Apache JMeter, https://jmeter.apache.org/
2Locust, https://locust.io/
3Performance Dashboard Design: How to Put Data to Work,
http://www.uxbooth.com/articles/performance-dashboard-design-how-to-put-
data-to-work/

(a) Information about the experiment execution.

(b) The specified concern and the concrete answer.

(c) An excerpt of the data from the experiment.

Figure 4: An excerpt from the report based on the stated con-
cern.

tools provide bottleneck detection or alerting, e.g., of pre-configured
threshold violations. The stakeholders have to know what they are
looking for, often guided by their previous experience, but also prej-
udice. Similar to our approach, the PAVO tool [18] implements ideas
from DPE to abstract the underlying analysis approaches from the
user, and to provide suitable visualization techniques for a given
concern. However, it does not provide any interpretation of data.

While natural language generation and visualization are both
established fields, we are only aware of one approach that has
already combined techniques from both areas for software execu-
tion data: Beck et al. [4] generate reports on method executions,
with a focus on textual explanations of dynamic call dependencies
and simple visualizations, only marginally covering performance
information. There are also works that use textual report genera-
tion and text summarization (without visualization) in other soft-
ware engineering scenarios, for instance, to automatically generate
code documentation [11, 12, 16], commit messages [5], or release
notes [13]. Integrating performance data into software code for
performance reporting, small visualizations can be embedded into
the code view [2, 3]. Beyond specific solutions that focus on inte-
grated reporting, there exists a variety of performance visualization
techniques, but for a general overview we refer to Isaacs et al. [9].

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed our vision of generating comprehensive
performance analysis reports tailored to user concerns. Instead
of being swamped with data, tailored answers allow to better un-
derstand and solve performance problems. Our approach employs
concern-driven analyses in combination with natural language gen-
eration and visualization techniques. We also presented Vizard, a
prototype implementation of our approach.4

Next steps in our research include investigating further software
performance concerns and proper ways of presenting the answers
to them. We will identify typical concerns and express them using
existing formalism, such as the ones proposed by Walter et al. [20]
or Schulz et al. [15]. This will be done by investigating different
use cases, i.e., how different performance analysis tools allow their
users to state concerns and how the results are reported. As we
need to access the data in these reports, we have to develop a model
that will be able to contain metrics and other data from different
tools.

To evaluate the approach, we will design and perform a user
study. The study should involve both non-experts and experts. How-
ever, performing a controlled experiment evaluating our approach
against existing ones would be challenging due to the many vari-
ables involved in the design and the lack of comparable systems. In
contrast, we suggest a qualitative approach where the participants—
given a realistic scenario—can select different elements for the re-
ports from a list of alternative choices (e.g., text representations and
visualizations of data, explanations, and solution recommendations).
We might discover differences between the information needs of
non-experts and experts and can use the results to fine-tune and
tailor the reports.

4Available at: https://github.com/DECLARE-Project/Vizard

ACKNOWLEDGMENT
The work in this paper is a part of the project “Visual Reporting of
Performance and Resilience Flaws in Software Systems”, supported
by Baden-Württemberg Stiftung, by the German Research Foun-
dation (DFG) in the Priority Programme “DFG-SPP 1593: Design
For Future—Managed Software Evolution” (HO 5721/1-1 and KO
3445/15-1), by the German Federal Ministry of Education and Re-
search (grant no. 01IS17010, ContinuITy), and by the Swiss National
Science Foundation project (178653).

Special thanks goes to Matthias Popp, for his support in the
development of this approach.

REFERENCES
[1] ISO/IEC/IEEE Systems and software engineering – Architecture description.

ISO/IEC/IEEE 42010:2011(E), 2011.
[2] S. Baltes, O. Moseler, F. Beck, and S. Diehl. Navigate, understand, communicate:

How developers locate performance bugs. In Proc. Int. Symp. on Empirical Soft.
Eng. and Measurement, ESEM, pages 1–10, 2015.

[3] F. Beck, O. Moseler, S. Diehl, and G. D. Rey. In situ understanding of performance
bottlenecks through visually augmented code. In Proc. Int. Conf. on Program
Comprehension, ICPC, pages 63–72, 2013.

[4] F. Beck, H. A. Siddiqui, A. Bergel, and D. Weiskopf. Method Execution Reports:
Generating text and visualization to describe program behavior. In Proc. IEEE
Working Conf. on Soft. Visualization, VISSOFT, pages 1–10, 2017.

[5] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk. On automat-
ically generating commit messages via summarization of source code changes. In
Proc. Int. Working Conf. on Source Code Analysis and Manipulation, SCAM, pages
275–284, 2014.

[6] A. Gatt and E. Krahmer. Survey of the state of the art in natural language gener-
ation: Core tasks, applications and evaluation. Journal of Artificial Intelligence
Research, 61:65–170, 2018.

[7] C. Haight and F. D. Silva. Gartner’s magic quadrant for application performance
monitoring suites. http://www.gartner.com/, 2016.

[8] C. Heger, A. van Hoorn, M. Mann, and D. Okanovic. Application performance
management: State of the art and challenges for the future. In Proc. Int. Conf. on
Perf. Eng., ICPE, pages 429–432. ACM, 2017.

[9] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann,
and P.-T. Bremer. State of the Art of Performance Visualization. In EuroVis -
STARs, 2014.

[10] Z. M. Jiang and A. E. Hassan. A Survey on Load Testing of Large-Scale Software
Systems. IEEE Transactions on Software Engineering, 41(11):1091–1118, 2015.

[11] P. W. McBurney and C. McMillan. Automatic documentation generation via
source code summarization of method context. In Proc. Int. Conf. on Program
Comprehension, ICPC, pages 279–290. ACM, 2014.

[12] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker.
Automatic generation of natural language summaries for Java classes. In Proc.
IEEE Int. Conf. on Program Comprehension, ICPC, pages 23–32. IEEE, 2013.

[13] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora. Auto-
matic generation of release notes. In Proc. Int. Symp. on Foundations of Soft. Eng.,
FSE, pages 484–495. ACM, 2014.

[14] D. Okanović, A. van Hoorn, C. Heger, A. Wert, and S. Siegl. Towards performance
tooling interoperability: An open format for representing execution traces. In
Proc. Eur. Workshop Comp. Perf. Eng., pages 94–108, 2016.

[15] H. Schulz, D. Okanović, A. van Hoorn, V. Ferme, and C. Pautasso. Behavior-driven
load testing using contextual knowledge—approach and experiences. In Proc. Int.
Conf. on Perf. Eng., 2019.

[16] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. Towards au-
tomatically generating summary comments for Java methods. In Proc. IEEE/ACM
Int. Conf. on Automated Soft. Eng., ASE, pages 43–52, 2010.

[17] J. Walter, S. Eismann, J. Grohmann, D. Okanović, and S. Kounev. Tools for
declarative performance engineering. In Int. Conf. on Perf. Eng., pages 53–56,
2018.

[18] J. Walter, M. König, S. Eismann, and S. Kounev. PAVO: A Framework for the
Visualization of Performance Analyses Results. In Proc. Symp. on Soft. Perf., SSP,
2016.

[19] J.Walter, A. vanHoorn, and S. Kounev. Automated and adaptable decision support
for software performance engineering. In Proc. Int. Conf. on Perf. Evaluation
Methodologies and Tools, VALUETOOLS, pages 66–73, 2017.

[20] J. Walter, A. van Hoorn, H. Koziolek, D. Okanović, and S. Kounev. Asking what?,
automating the how?: The vision of declarative performance engineering. In
Proc. Int. Conf. on Perf Eng., ICPE, pages 91–94. ACM, 2016.

http://www.gartner.com/

	Abstract
	1 Introduction
	2 Concern-driven Performance Reporting
	3 Vizard Tool
	4 Related Work
	5 Conclusion and Future Work
	References

