
PPTAM:
Production and Performance Testing Based Application Monitoring

Alberto Avritzer
eSulab Solutions, Princeton, NJ

Daniel Menasché, Vilc Rufino
Federal University of Rio de Janeiro, Brazil

Barbara Russo, Andrea Janes
Free University of Bozen-Bolzano, Italy

Vincenzo Ferme, André van Hoorn, Henning Schulz
University of Stuttgart, Germany

ABSTRACT
It is mandatory to continuously assess software systems during
development and operation, e.g., through testing and monitoring, to
make sure that they meet their required level of performance. In our
previous work, we have developed an approach to assess the degree
to which configurations of a software system meet performance
criteria based on a domain metric that is obtained by considering
operational profiles and results from load test experiments. This
paper presents our PPTAM tooling infrastructure that automates
our approach and provides a dashboard visualization of the results.
ACM Reference Format:
Alberto Avritzer, Daniel Menasché, Vilc Rufino, Barbara Russo, Andrea
Janes, and Vincenzo Ferme, André van Hoorn, Henning Schulz. 2019. PP-
TAM: Production and Performance Testing Based Application Monitoring.
In Tenth ACM/SPEC International Conference on Performance Engineering
Companion (ICPE ’19 Companion), April 7–11, 2019, Mumbai, India. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3302541.3311961

1 INTRODUCTION
The operational profile, i.e., the statistical representation of the way
a system is used in production [2], is one of the major influence
factors of performance and related properties such as reliability, scal-
ability, and elasticity. Stakeholders must be aware of the expected
and the actual operational profile when designing and operating
their system, e.g., to provide sufficient capacity. Continuous per-
formance monitoring technologies are in common use to collect
relevant data [4]. In our previous work [1], we have presented an
approach to combine expected production usage and testing results
to produce a scalability metric that reflects scalability testing results
that were based on i) the used input domain partition (operational
profile) [6] and ii) different system deployment configurations to
be quantitatively assessed and compared w.r.t. the input domain.

After providing a brief summary of our domain-based approach
and metric visualization [1], this paper gives an overview of the
PPTAM tooling infrastructure that we developed to implement the
approach and to integrate it with production systems and devices
of stakeholders for continuous performance assessment and visual-
ization. Our PPTAM tool including a demo is publicly available.1

1https://github.com/pptam

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’19 Companion, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6286-3/19/04.
https://doi.org/10.1145/3302541.3311961

2 APPROACH AND METRIC VISUALIZATION
The key steps of the process for the domain-based assessment of
software system configurations— as depicted in Figure 2 and de-
tailed in our previous work [1]— are: 0 collection of operational
data, 1 analysis of operational data, 2 load test experiment gen-
eration, 3 load test experiment execution, and 4 calculation of
the domain-based metric, for each system configuration. The ap-
proach is used to quantitatively assess and compare testing results
of performance-related properties of different system configura-
tions— for instance with different deployments or parameters—
based on expected workload situations (e.g., number of users).

The results can be visualized, as shown in Figure 1, depicting
the degree to which a given system configuration satisfies the
fail/pass criteria, e.g., response time requirements. In the example,
the best theoretical relative mass (shown as the outer polygon in
light blue) represents the fraction of the domain metric that would
be accrued if all tests were successful. The values correspond to
the occurrence of workload situations according to the operational
profile. We have shaded in Figure 1 the area under the curve for
i) the best theoretical relative mass (outer polygon in light blue),
ii) the best measured configuration (A, light green), and iii) the
configuration (B, purple) that equals the best measured relative
mass for the largest number of users (150). The domain metric
for a configuration is the sum of the relative masses [1]—with the
theoretical maximum of 1.0. The plots in Figure 1 also show gaps
between the best relative mass and the obtained measurements,
for different workload situations and system configurations. These
gaps represent the impact of themeasured performance degradation
on the domain metric. Therefore, customers using the proposed
approach can carefully engineer their systems to maximize the
return on investment on their (cloud) computing infrastructure.

R
el

at
iv

e 
M

as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

0.19

0.22 0.22

0.20x

x

0.06

x x

x

x

x

0.10

0.11
x

250 300

x x

x

Best relative mass Configuration A Configuration B

Figure 1: Visualization of best and actual test masses

https://doi.org/10.1145/3302541.3311961
https://github.com/pptam
https://doi.org/10.1145/3302541.3311961


t

λ 

wall­clock time
9 AM

300

BenchFlow

Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn­1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

... ... ... ... ...

... ... ... ... ...

^

Operational profile Empirical distribution of
workload situations

Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e 
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

St
ep

(In
te

rm
ed

ia
te

)
Ar

tif
ac

t
To

ol

Figure 2: Overview of the PPTAM approach and tooling infrastructure

3 TOOL OVERVIEW
In addition to the process steps and artifacts, Figure 2 includes
details on the tool ecosystem. It comprises the following parts:
(i) an analysis component that gathers the operational profile from a
production system and computes the baseline probability of finding
the system at a given state (workload situation), (ii) an infrastructure
that generates and executes load test experiments with different
architectural configurations to collect system performance against
a baseline (fail/pass criteria), and (iii) a graphical user interface that
calculates and visualizes the current performance metric in a report
and on a smartphone user interface (UI).

For gathering the operational profile, we utilize Application Per-
formance Monitoring (APM) [4] tools, e.g., an open-source tool
from the OpenAPM initiative.2 These tools commonly utilize time
series databases, e.g., InfluxData, for storing the monitored opera-
tional data. Our tool (packaged as a Jupiter Notebook3) connects to
an InfluxData, retrieves the raw operational data, and generates the
empirical distribution of the workload situations (best test masses)
defined in the script.

The infrastructure for load testing uses the open-source Bench-
Flow tool [3] to automate the deployment of the defined experi-
ments (building on container-based virtualization using Docker)
for the defined workload situations and system configurations. The
Faban load driver framework is used to run the experiments, to
collect the performance measures, and to automate the analysis of
the testing results. Load test templates are either manually defined
or extracted automatically (e.g., using ContinuITy [5]).

R scripts (as a Jupyter Notebook) are used to evaluate the perfor-
mance of the test against a baseline, compute the performance for
each test at each state of the system (Relative Mass), and generate
the plots of relative masses against the previously obtained best test
masses. React-native, a Javascript framework for building native
mobile apps, is used to create the UI4.

2https://openapm.io/
3https://jupyter.org/
4https://facebook.github.io/react-native

4 CONCLUSIONS
Traditional performance testing approaches usually require long-
running tests to be executed according to operational profile spec-
ifications [6]. In continuous integration environments, there is
a need to continuously run tests to assess scalability and other
performance-related properties of new software versions under
changing workload situations and system configurations. In this pa-
per, we have presented the tooling infrastructure for our previously
introduced approach for continuous assessment and comparison
of system configurations. APM tools are used to derive the best
test masses from production data. Based on this, load tests are
generated and executed to continuously assess the performance
of new software versions in the test environment based on the
operational profile. The results are visualized in reports and on
smartphone-based user interfaces.

Acknowledgments This work has been partly supported by eSulab-
Solutions, Inc., the German Federal Ministry of Education and Research
(ContinuITy project, grant 01IS17010), and the Italian Ministry of Education,
Universities and Research (GAUSS project, grant 2015KWREMX).

REFERENCES
[1] Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, Henning Schulz,

and André van Hoorn. 2018. A Quantitative Approach for the Assessment of
Microservice Architecture Deployment Alternatives by Automated Performance
Testing. In Proc. ECSA 2018. 159–174.

[2] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. 2016. Workload
Characterization: A Survey Revisited. ACM Comput. Surv. 48, 3 (2016), 48:1–48:43.

[3] Vincenzo Ferme and Cesare Pautasso. 2018. A Declarative Approach for Perfor-
mance Tests Execution in Continuous Software Development Environments. In
Proc. ACM/SPEC ICPE 2018. 261–272.

[4] Christoph Heger, André van Hoorn, Mario Mann, and Dusan Okanovic. 2017.
Application Performance Management: State of the Art and Challenges for the
Future. In Proc. ICPE 2017. 429–432.

[5] Henning Schulz, Dusan Okanovic, André van Hoorn, Vincenzo Ferme, and Cesare
Pautasso. 2019. Behavior-driven Load Testing Using Contextual Knowledge—
Approach and Experiences. ACM. To appear.

[6] E. J. Weyuker and A. Avritzer. 2002. A Metric for Predicting the Performance of
an Application Under a Growing Workload. IBM Syst. J. 41, 1 (Jan. 2002), 45–54.


	Abstract
	1 Introduction
	2 Approach and Metric Visualization
	3 Tool Overview
	4 Conclusions
	References

