
Scalability Assessment of Microservice Architecture Deployment Configurations:
A Domain-based Approach Leveraging Operational Profiles and Load Tests

Alberto Avritzerb, Vincenzo Fermef, Andrea Janesa, Barbara Russoa, André van Hoornd,
Henning Schulzc, Daniel Menaschée, Vilc Rufinoe

aFree University of Bozen-Bolzano, Bolzano, Italy
bEsulabSolutions, Inc., Princeton, NJ, USA

cNovatec Consulting GmbH, Leinfelden-Echterdingen, Germany
dUniversity of Stuttgart, Stuttgart, Germany

eFederal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
fKiratech S.p.A., Paradiso (Lugano), Switzerland

Abstract

Microservices have emerged as an architectural style for developing distributed applications. Assessing the performance of archi-
tecture deployment configurations — e.g., with respect to deployment alternatives — is challenging and must be aligned with the
system usage in the production environment. In this paper, we introduce an approach for using operational profiles to generate
load tests to automatically assess scalability pass/fail criteria of microservice configuration alternatives. The approach provides
a Domain-based metric for each alternative that can, for instance, be applied to make informed decisions about the selection of
alternatives and to conduct production monitoring regarding performance-related system properties, e.g., anomaly detection.

We have evaluated our approach using extensive experiments in a large bare metal host environment and a virtualized environ-
ment. First, the data presented in this paper supports the need to carefully evaluate the impact of increasing the level of computing
resources on performance. Specifically, for the experiments presented in this paper, we observed that the evaluated Domain-based
metric is a non-increasing function of the number of CPU resources for one of the environments under study. In a subsequent
series of experiments, we investigate the application of the approach to assess the impact of security attacks on the performance of
architecture deployment configurations.

1. Introduction
Background. The microservices architectural style (Newman,
2015) is an approach for creating software applications as a col-
lection of loosely coupled software components. These com-
ponents are called microservices and are supposed to be au-
tonomous, automatically and independently deployable, and
cohesive (Newman, 2015). This architecture lends itself to de-
centralized deployment, and for continuous integration and de-
ployment by developers. Several large companies (e.g., Ama-
zon and Netflix) are reporting significant success with microser-
vice architectures (Francesco et al., 2017).

Currently, several configuration alternatives are possible for
microservices deployment, for example, serverless microser-
vices using functions (e.g., Amazon Lambda1), container-based
deployment (e.g., Docker2), virtual machines per host, and sev-
eral hosts. Of course, depending on the microservice granu-
larity, a combination of these mechanisms could be used. The
available architecture alternatives and their parameters imply a
large space of architecture deployment configurations (Taylor
et al., 2009) to choose from.

Challenges. Microservices are supposed to be independent of
each other. However, the underlying deployment environment

1https://aws.amazon.com/lambda/
2https://www.docker.com/

might introduce coupling and impact the overall application
performance. Coupling can occur at the load balancer, at the
DNS lookup, and at the different hardware and software layers
that are shared among the microservices. Ueda et al. (2016) re-
port the performance degradation of microservice architectures
as compared to an equivalent monolithic deployment model.
The authors have analyzed the root cause of performance degra-
dation of microservice deployment alternatives (e.g., due to vir-
tualization associated with Docker) and have proposed perfor-
mance improvements to overcome such a degradation. There-
fore, microservice architects need to focus on the performance
implications of architecture deployment alternatives. In ad-
dition, the impact of the expected production workloads on
the performance of specific microservice deployment config-
urations needs to be taken into account. The alternatives for
microservice architecture deployment considered in this paper
are memory allocation, CPU fraction used, and the number of
(Docker) container replicas assigned to each microservice.

Goals. In this paper, we introduce a quantitative approach for
the performance assessment of microservice deployment alter-
natives. The approach uses automated performance testing re-
sults to quantitatively assess each architecture deployment con-
figuration in terms of a Domain-based metric introduced in this
paper. For performance testing, we focus on load tests based

Preprint submitted to Journal of Systems and Software February 27, 2020

Accepted manuscript, Journal of Systems and Software, https://doi.org/10.1016/j.jss.2020.110564.

https://aws.amazon.com/lambda/
https://www.docker.com/
https://doi.org/10.1016/j.jss.2020.110564

t

λ

wall­clock time
9 AM

300

BenchFlow

 Faban

Load test
template

Architect.
config.

s0

1
ϕ

i

0.015
Γk 0.042
pass/fail (ck) PASS

sn­1

2.164
0.108
FAIL

...

...

δk 1.26 % 2.58 %
δk ⋅ ck 1.26 % 0.00 %
norm. test mass (si * p'(λ'))

Σ

100.00 %
74.81 %
0.142

...

...

^

Operational profile Empirical distribution of
workload situations

Baseline & test results
per architectural config.

Domain metric
dashboard

#Workload
situations

ContinuITy

Analysis of
operational data

1
Experiment
generation

2
Experiment
execution

3
Domain metric

calculation

4
Collection of

operational data

0

λ' sampled workload situation

f'

100 200 300

0.2

R
el
at
iv
e
M
as
s

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload Situations (Number of Users)

x

x

x x
x

x

x

0.10
x

250 300

x x

x

St
ep

(In
te

rm
ed

ia
te

)
Ar

tif
ac

t
To

ol

Figure 1: Overview of methodology steps and framework architecture.

on operational workload situations (Jiang and Hassan, 2015;
Vögele et al., 2018), e.g., arrival rates or the concurrent number
of users.

Methodology. The proposed methodology steps and frame-
work architecture for scalability assessment are illustrated in
Figure 1. The steps are briefly introduced in the following and
are detailed in Section 3. We combine analysis of operational
profile data with performance testing results to generate a do-
main metric dashboard. The dashboard illustrates system scal-
ability with respect to operational profile distribution in pro-
duction, i.e., empirical distribution of workload situations, and
performance results in the load test environment. Operational
profile data is used to estimate the probability of occurrence of
each workload situation in production. Scalability requirements
are used to assess each architecture deployment configuration.
The resulting quantitative assessment is a metric value between
0–1 that assesses the fitness of a certain architecture alternative
to perform under a defined workload situation.

Experiments. We evaluate and apply the proposed approach in
two types of experiments.

First, we have computed the introduced Domain-based met-
ric for twelve different configurations based on two different
memory allocations, two different CPU allocations, and three
different values for the number of microservice replicas. The
experiments were executed in two data center environments.
We have identified, for each environment, the architecture de-
ployment configuration that produced the best value for the
Domain-based metric. It is very significant that in both environ-
ments, increasing the number of replicas for the service being
evaluated or the fraction of CPU allocation did not guarantee
better performance, as assessed by the Domain-based metric.
Additional experiments in one of the environments were exe-
cuted as a basis for our subsequent investigation of the Domain-
based metric’s sensitivity concerning the configured scalability

requirement.
Second, we have evaluated the impact of security attacks on

the Domain-based metric for scenarios with and without secu-
rity attacks.

Contributions. This paper’s key contributions are as follows:

• Methodology for scalability assessment: A new quanti-
tative approach and framework for the assessment of mi-
croservice architecture configuration alternatives.

• Experimental validation: The experimental validation of
the proposed approach for scalability assessment with and
without attacks.

Prior art. Our approach for the Domain-based metric eval-
uation is based on the input domain partition testing strat-
egy (Weyuker and Jeng, 1991) and domain-based load test-
ing (Avritzer and Weyuker, 1995). In partition testing based
on input domains, the input domain is divided into subsets that
have equivalent fault-revealing behavior. In domain-based load
testing, the load testing domain is divided into subsets that have
equivalent workload situations (Avritzer and Weyuker, 1995).
This paper is an extension of our previous works on the pro-
posed approach (Avritzer et al., 2018) and the framework im-
plementation (Avritzer et al., 2019). The relation to the pre-
vious works is as follows. First, this paper is a self-contained
and revised presentation of the previously separated materials.
It includes an extended sensitivity analysis of the scalability as-
sessment scenario. Moreover, this paper presents an additional
application and experiment study for assessing the performance
under attacks using the proposed approach and metric (see Ta-
ble 1).

Paper outline. The remainder of this paper is organized as fol-
lows. Section 2 contains a summary of the reviewed litera-
ture on microservice architecture challenges and performance

2

Signatures
for security

Fully
automated

Customer-
affecting metrics

Server-side
metrics

Partition testing
(Avritzer and Weyuker, 1995) 5

Performance signatures
(Avritzer et al., 2010) 5 5

Assessment of architecture alternatives
(Avritzer et al., 2018) 5

PPTAM framework
(Avritzer et al., 2019) 5

This paper 5 5 5

Table 1: The contributions of this paper in comparison with the previous work of the authors.

assessment. Section 3 contains an overview of the proposed
approach and infrastructure for performance assessment of mi-
croservice architectures. Sections 4–7 describe the experimen-
tal design, and report and discuss the experimental results ob-
tained by applying the proposed approach. Section 8 presents
our conclusions and suggestions for future research. A repro-
ducibility package is provided online (Avritzer et al., 2020).

2. Related Work

In this section, we present a summary of the previous work
by the authors, the reviewed literature on microservice archi-
tecture challenges, the performance assessment of microservice
architectures, and intrusion detection tools. In each case, we re-
late the reviewed literature to this paper’s contributions.

2.1. Previous Work of the Authors

Table 1 provides an overview of the relationship between this
paper’s contributions and the contributions by our previous re-
lated publications, as detailed hereinafter.

The current paper is an extension of a previous work pub-
lished at the 12th European Conference on Software Architec-
ture (ECSA 2018) (Avritzer et al., 2018) and also includes the
contents of a two-page tool paper (Avritzer et al., 2019). The
paper at ECSA 2018 introduced the quantitative approach based
on the Domain-based metric to evaluate different microser-
vice architecture deployment alternatives and compared them
in bare-metal and virtual environments. In the ECSA 2018 pa-
per, we extended previous work (Avritzer and Weyuker, 1995;
Weyuker and Avritzer, 2002) to define a new methodology for
the assessment of microservice deployment alternatives — also
referred to as (architecture) configurations. In (Weyuker and
Avritzer, 2002), we introduced a metric to assess software scal-
ability. This metric uses the requirement definition, high-level
architecture modeling, and system measurement results to as-
sess the system architecture’s ability to meet performance re-
quirements as a function of workload increases. In (Avritzer
and Weyuker, 1995), we introduced an approach for the assess-
ment of telecommunication systems using Markovian approx-
imations. This approach uses operational data and a resource-
based Markov state definition to derive an efficient test suite
that is then used as the basis for the domain-based reliability

assessment of the system under test (SUT). The Markovian ap-
proximation is used to estimate the steady-state probability of
occurrence of each test case. In this way, the test suite can be
effectively reduced to focus on the performance test cases that
are most likely to represent production usage. In domain-based
load testing, the input domain is the workload, e.g., in terms
of the arrival rate or the concurrent number of users. The total
workload is divided into subsets that are related to the proba-
bility of occurrence of each workload situation (Avritzer and
Weyuker, 1995).

The tool paper (Avritzer et al., 2019) proposed a fully auto-
mated framework to implement the approach introduced in the
ECSA 2018 paper. The approach enables experimental replica-
tion in different contexts, and result visualization using a dash-
board (e.g., mobile device).

The current paper conveys all previous work and further in-
cludes: (i) new experiments that incorporate security attacks
using the Mirai tool (Barker, 2016), (ii) new experiments in the
virtualized environment (UNIBZ) using a different operational
profile and additional CPU and memory resources, (iii) a sensi-
tivity analysis of the performance threshold in the experiments
with and without attacks in the UNIBZ environment. For a de-
scription of the UNIBZ environment please refer to Section 4.3.

2.2. Microservice Architectural Challenges

Alshuqayran et al. (2016) present a comprehensive literature
review of microservice architectural challenges. The authors
focus on the challenges, the architecture descriptions, and their
quality attributes. They have found that most of the current
research on microservice architecture quality attributes has fo-
cused on scalability, reusability, performance, fast agile devel-
opment, and maintainability. Pahl and Jamshidi (2016) present
a systematic survey of the existing research on microservices
and their application in cloud environments. They have found
that microservices research is still immature and there is a need
for additional experimental and empirical evaluation of the ap-
plication of microservices to cloud environments. Their litera-
ture survey has also identified the need to develop microservices
tool automation. In this paper, we address some of these con-
cerns by: (i) presenting a methodology for scalability assess-
ment that can be integrated into tool automation, and, (ii) con-
ducting experiments to validate the proposed methodology.

3

2.3. Performance Assessment of Microservice Architectures

Casalicchio and Perciballi (2017) address the problem of se-
lecting more appropriate performance metrics to activate auto-
scaling actions. Specifically, they investigate the use of relative
and absolute metrics and propose a new autoscaling algorithm
that is able to reduce the response time by a factor between
0.66 and 0.5, when compared to the actual Kubernetes’ hor-
izontal auto-scaling algorithm. In this paper, we introduce a
new Domain-based metric that captures: (i) scalability testing
results in the SUT using several architecture deployment con-
figurations, (ii) expected production usage derived from oper-
ational data analysis. Therefore, the metric represents the sys-
tem’s ability to satisfy scalability requirements for the evalu-
ated workload situations and architecture deployment configu-
rations.

2.4. Intrusion Detection System Tools

A comprehensive survey of intrusion detection systems
(IDS) was presented by Milenkoski et al. (2015), where
IDS tools were classified by: (i) monitored platform (host-
based, network-based, or hybrid), (ii) attack detection method
(misuse-based, anomaly-based, hybrid), and, (iii) deployment
architecture (non-distributed and distributed). In the anomaly-
based IDSs, a baseline profile of normal operations is developed
and deviations from the baseline profile are identified as intru-
sions using performance signatures.

Avritzer et al. (2010) proposed an architecture for intrusion
detection systems using off-the-shelf IDSs complemented by
performance signatures. The authors have shown that the per-
formance signature of well-behaved systems and of several
types of security attacks could be identified in terms of certain
performance metrics, such as CPU and memory percentage or
number of active threads. In this paper, we evaluate the impact
of security intrusions on the Domain-based metric.

3. Methodology and Framework

Our methodology is designed to support the automated as-
sessment of architecture deployment configurations. For each
configuration, this results in a measure—the so-called Domain-
based metric—that quantifies the configuration’s ability to sat-
isfy scalability requirements under a given operational profile.
We define workload situation as an abstract concept to represent
the output of operational data analysis per application domain.
Specifically, the number of concurrent users is the focus of this
paper. However, in other application domains, such as banking,
transaction rate could be used.

For a complex system under test, such as the microservice
architecture under study in this paper, it would be difficult to
assess resource saturation, as several types of services are exe-
cuted that demand work from several software and hardware re-
sources, virtualization engines, load balancers, CPU, memory,
I/O, and network. Therefore, the importance of the proposed
methodology resides in its ability to assess system scalability
for different architecture configurations in complex microser-
vice architectures.

This section describes the approach (Section 3.1), applica-
tions (Section 3.2), and the tooling infrastructure (Section 3.3).
For the sake of the reader, Table 2 summarizes the notations
used in the approach.

Table 2: Table of notation

Variable Description
Λ set of workload situations
λ workload situation, λ ∈ Λ

p(λ) probability of occurrence of λ
f (λ) frequency of occurrence of λ
s j j-th service
λ0 baseline workload situation
Γ j(λ0) pass/fail threshold for s j

Γ j(λ0) = x(λ0) j + 3 × σ(λ0) j

x(λ0) j mean response time of s j for λ0

σ(λ0) j standard deviation of s j for λ0

x(λ) j mean response time of s j for λ
α architecture deployment configuration
δ j fraction of calls to service s j

ŝ(λ) fraction of successful calls to all services
D(α,S) Domain-based metric

D(α,S) =
∑

i p(λi)ŝ(λi)

3.1. Computation of the Domain-based Metric

The approach introduced in this paper and illustrated in Fig-
ure 1 consists of the following steps:

1. Collection of operational data, i.e., data on normal system
usage (e.g., HTTP requests) in a given time window are
collected,

2. Analysis of operational data, i.e., the quantitative estima-
tion of the probability of occurrence of a certain workload
situation (e.g., number of concurrent users) based on the
analysis of the operational data,

3. Experiment generation, i.e., the automated generation of
the load test cases for the architecture deployment config-
urations under evaluation,

4. Baseline computation, quantitative definition of the scal-
ability requirements, i.e., the quantitative definition of
the scalability requirements that consist of the expected
pass/fail criteria for the load tests, e.g., based on a speci-
fied threshold of the system response time for the expected
workload,

5. Experiment execution, i.e., the execution of load test cases
for the architecture deployment configurations specified in
the experiment generation step, and the computation of the
Domain-based metric.

4

response
time

workload situation (λ) operating point

s1 fails s2 passes

tolerated response
times for s2

tolerated response
times for s1

maximum tolerated workload
situation for s2

maximum tolerated workload
situation for s1

�1(λ0)

x(λ)1

�2(λ0)
x(λ)2

Figure 2: System scalability illustrating response time as a function of workload situations, for two services: one that passes the scalability test, and the other that
fails, given the considered operating point. Note that x(λ)1 and x(λ)2 refer to the mean response times of services 1 and 2 under baseline load for one specific
architecture deployment configuration. Γ(λ0) for i = 1, 2 are the baseline measurements for the corresponding services.

In this section, we illustrate the approach with a running ex-
ample, which is based on the experiments reported in Sections 4
and 5. The operational profile is taken from publicly available
information about a video streaming service, as described in
Section 4.5.

Step 1—Analysis of Operational Data.
The operational profile describes for each workload situation

λ ∈ Λ, its probability of occurrence p(λ), which is estimated by
the relative frequency of occurrence f (λ) in the SUT. The oper-
ational profile is used to answer two questions: (i) How do we
identify the workload situations to test? (ii) How representative
are the selected tests with respect to production usage?

To illustrate this step, we first analyze the operational data
to create the operational profile as frequency of occurrence of
the workload situations found in the system at a certain time t.
The operational profile is the output of Step 1 in Figure 1. To
reduce the number of tests to execute, the workload situations
are aggregated in bins λ1, ..., λk and the final operational pro-
file represents the frequency of occurrence of such bin values,
f (λ1), ..., f (λk). The test suite coverage criterion is based on the
values of such frequencies.

Step 2—Experiment Generation. In this step, we define
the experiment settings for the test cases. The elements of this
step are:

1. The load test sequence is obtained by selecting the work-
load situations defined in Step 1 (i.e., the bins of the oper-
ational profile of the SUT),

2. The load test specification consists of a workload situa-
tion of the load test sequence and a choice of an architec-
ture deployment configuration,

3. The baseline requirement defines, for each service s j, the
test pass/fail criteria based on a performance metric. We
make no specific assumption about such a performance

metric. An example used in this work is the average re-
sponse time of a service for a reference architecture de-
ployment configuration,

4. A test case consists of a set of experiments performed ac-
cording to a load test specification and evaluated against a
baseline requirement. In this work, we performed 60 ex-
periments for each test case.

Step 3—Baseline Computation, Quantitative Definition
of the Scalability Requirements. In this step, we describe the
approach that we used to calculate the fraction of correctly ex-
ecuted services ŝi for test case i. Initially, a test case is run to
identify the baseline requirement. The test is performed accord-
ing to a load test specification defined by a deployment config-
uration with high resources α0 ∈ A and a low workload λ0 ∈ Λ.
For such a test case, the average response time, x(λ0) j, and the
standard deviation, σ(λ0) j for each service s j, under the base-
line workload λ0 are measured. The scalability requirement for
service s j is then defined as Γ j(λ0) = x(λ0) j +3×σ(λ0) j. This is
an innovative approach for the definition of scalability require-
ments that employs a measured baseline performance to auto-
matically identify a tolerance for scalability degradation under
load.

Table 3 shows the baseline requirements Γ j(λ0) we measured
for the services s j of the SUT used in our study. As the scala-
bility requirement is the same for all test cases, the values in
Table 3 are used as scalability requirements for all load test
specifications.

Figure 2 illustrates our approach for two services with re-
sponse time as metric and Γ0 as the baseline requirement and
for a workload situation referred to as the operating point. Re-
sponse time is averaged over the experiments of the test case.
The curves in Figure 2 represent the average response time of
the two services under increasing workload situations (λ). At
the operating point, service s1 fails and service s2 succeeds

5

as the average response time over the given experiments of s1
(x(λ)1) exceeds the baseline threshold Γ1(λ0) before the operat-
ing point whereas x(λ)1 does not. In general, service s1 and s2
fail at a given operating point once their average response time
exceeds Γ1(λ0) and Γ2(λ0), respectively. The workload situa-
tion for which this occurs is indicated as the maximum tolerated
workload situation and corresponds to the maximum tolerated
response time.

Step 4a—Experiment Execution (Pass/Fail Assessment).
In this step, each service s j is tested under a certain load test
specification, i.e., workload λ ∈ Λ and configuration α ∈ A.
In the following, we drop the configuration α to simplify the
notation, as these computations are repeated for each workload
situation and configuration. Each test case executes the set of
n services {s1, . . . , sn} and produces {δ1, . . . , δn}, each of which
is the fraction of service executions that were assessed as suc-
cessful by comparison with the scalability requirement. Each
service s j is marked as pass for workload λ and configuration
α, if x(λ) j < Γ j(λ0). In this case, c j = 1 will be set to denote
that service s j has passed the test, otherwise c j = 0 will be set.
Therefore, the fraction ŝ of successful executions of all services
can be evaluated as:

ŝ(λ) =

n∑
j=1

δ jc j (1)

Equation 1 assumes that the execution of the services j is
mutually exclusive, which is accurate for the microservice ar-
chitecture considered in this paper. However, for a more general
applicability of the approach it would be more accurate to de-
velop a queuing network model to compute ŝ(λ). The reader is
referred to Denning and Buzen (1978) for a detailed review of
the required assumptions and limitations for the applicability of
queuing network models.

Table 4 illustrates the pass/fail estimation for one load test
specification where λ = 100. For this test case, the fraction
of correctly executed services was evaluated as ŝ = 74.81%
(Eq. 1).

Step 4b—Experiment Execution (Computation of
Domain-based Metric). Finally, the total Domain-based
metric D(α, S) for the configuration α, with respect to a test
suite S defined by workload situations λ1,...,λz can be evaluated
as:

D(α, S) =

z∑
i=1

p(λi)ŝ(λi) (2)

where p(λi) is the probability of occurrence corresponding to
workload situation λi (as in Step 1). The Domain-based metric
per workload situation is D(α, S , i) = p(λi)ŝ(λi). The resulting
quantitative assessment is a measure between 0–1 that can be
used to assess the performance of different architecture deploy-
ment configurations. For the running example, as illustrated in
Figure 1, D(α, S) was evaluated as 0.615 and the contribution
of the test case reported at the end of Step 4a was 0.142, i.e.,
0.19× 74.81% where 0.19 is the frequency of occurrence of the
workload situation λ = 100 in the operational profile (Figure 3).

D
om

ai
n

m
et

ric
 p

e
r

w
or

kl
o

ad
 s

itu
at

io
n

0.25

0.20

0.15

0.05

0

50 100 150 200
Workload situation (number of users)

0.19

0.22 0.22

0.20x

x

0.06

x x

x

x

x

0.10

0.11
x

250 300

x x

x

Total probability mass Configuration A Configuration B

Figure 3: Plots of Domain-based metric per workload situation for different
architecture deployment configurations of the test environment

The contribution to the Domain-based metric of workload
situations in a load test sequence can be displayed in plots. Such
a plot depicts the degree to which a given system deployment
configuration satisfies the fail/pass criterion. In the example
shown in Figure 3, the plots at the workload situations of the
load test sequence show gaps between the total probability mass
(outer polygon, light blue) and the obtained measurements (in-
ner polygons) for two architecture deployment configurations.
These gaps represent the impact of the measured performance
degradation on the Domain-based metric.

3.2. Applications
In this work, we perform a set of case studies to illustrate

and validate the approach introduced in this paper. Our first
case study was presented in our previous work (Avritzer et al.,
2018) and concerned the comparison between load testing in
a bare-metal environment (HPI) and in a virtual environment
(UNIBZ). Such analysis is described in Section 5.1. We have
then performed a new case study to assess the sensitivity of the
domain metric with respect to the scalability requirement, by
scaling the threshold by a factor between 0.2 and 50 times the
original value as described in Section 6. The last case study,
which is presented in Section 5.2, compares the system under
test (SUT) normal behavior with its behavior under security at-
tacks.

3.3. Framework Architecture
Figure 1 includes details on the tool ecosystem used to imple-

ment the proposed approach. It comprises the following major
components:

(i) An analysis component that gathers the operational pro-
file from a production system and computes the baseline
probability of finding the system at a given state (work-
load situation).

(ii) An infrastructure that generates and executes load test ex-
periments with different architecture deployment config-
urations to collect system performance against a baseline
(fail/pass criteria).

6

Table 3: Scalability requirements based on baseline requirements (in seconds)

s j createOrder basket getCatalogue getItem login . . .

x(λ0) j 0.018 0.008 0.011 0.012 0.033 . . .

σ(λ0) j 0.008 0.003 0.002 0.009 0.025 . . .

Γ j(λ0) 0.042 0.017 0.017 0.039 0.108 . . .

Table 4: Pass/fail based on scalability requirements (in seconds) for workload specification λ

s j createOrder basket . . . login . . .

Γ j(λ0) 0.042 0.017 . . . 0.108 . . .

x(λ) j 0.015 0.009 . . . 2.164 . . .

Pass/fail pass pass . . . fail . . .

δ j 1.26 % 1.26 % . . . 2.58 % . . .

(iii) A graphical user interface that calculates and visualizes
the current performance metric in a report and on a smart-
phone user interface (UI).

Each of these components is operated by a series of tools
that we developed or integrated. For gathering the opera-
tional profile, we utilize Application Performance Monitoring
(APM) (Heger et al., 2017) tools, e.g., an open-source tool from
the OpenAPM initiative.3 These tools commonly utilize time-
series databases, e.g., InfluxData, for storing the monitored op-
erational data. Our tool (packaged as a Jupiter Notebook4)
connects to an InfluxData, retrieves the raw operational data,
and generates the empirical distribution of the workload situa-
tions (best test masses) defined in the script. The infrastructure
for load testing uses the open-source BenchFlow tool (Ferme
and Pautasso, 2018) to automate the deployment of the defined
experiments (building on container-based virtualization using
Docker) for the defined workload situations and system con-
figurations. The Faban load testing framework is used to run
the experiments, to collect the performance measures, and to
automate the analysis of the testing results. Load test specifi-
cations are either manually defined or extracted automatically
(e.g., using ContinuITy (Schulz et al., 2019)). R scripts (as a
Jupyter Notebook and Rshiny5 application) are used to evalu-
ate the performance of the test against a baseline, compute the
performance for each test at each state of the system, generate
the plots of total distribution mass and the previously obtained
Domain-based metric curves, and compute the sensitivity anal-
ysis and plots. React-native, a Javascript framework for build-
ing native mobile apps, is used to create the UI6.

Our PPTAM tool including a demo is publicly available.7

4. Experiment Design

In our evaluation, we show how to use our approach as il-
lustrated in Figure 1 and Section 3.1 to compute the Domain-

3https://openapm.io/
4https://jupyter.org/
5https://shiny.rstudio.com
6https://facebook.github.io/react-native
7https://github.com/pptam

based metric and assess the system scalability and performance
during regular behavior and under attack. The evaluation con-
siders: (i) a given operational environment, (ii) a specific SUT,
and, (iii) its architecture deployment configuration alternatives.
We use the operational profile from Step 1 in Section 3.1 and
apply it to the SUT Sock Shop microservices demo in the two
different environments as described in Section 4.1. We execute
the experiments generated by our Step 2 and compare the re-
sults against individual baselines as per Step 3.

In designing a load testing methodology, approaches are
needed to help cope with the test space explosion. In our
methodology, we cope with the state space explosion in the fol-
lowing ways:

• We aggregate the number of workload situations to be
measured by combining neighboring workload situations.
In the following, to simplify notation, we use concurrent
number of users to represent workload situations.

• We create a small number of architecture deployment con-
figurations to be tested by focusing on CPU, memory and
the number of instances of one microservice, namely cart.
This was done because cart was the mostly used microser-
vice.

• We generate pass/fail results, for each architecture deploy-
ment configuration for the constant number of workload
situations identified. Therefore, for each architecture de-
ployment configuration, we run a small number of tests.

The remainder of this section describes the precise details
of our experiment design. The experimental settings and the
associated results are included in our reproducibility pack-
age (Avritzer et al., 2020).

4.1. System Under Test

As system under test (SUT), we utilize the Sock Shop mi-
croservices demo (most recent version as per March 28, 20188)

8https://microservices-demo.github.io/

7

https://openapm.io/
https://jupyter.org/
https://shiny.rstudio.com
https://facebook.github.io/react-native
https://github.com/pptam
https://microservices-demo.github.io/

built by Weaveworks. It represents a sample e-commerce web-
site that sells socks, implemented using 12 microservices, one
of which is named cart, handling the users’ shopping carts. For
the implementation, various technologies were used, e.g., Java,
.NET, Node.js, and Go. The Sock Shop has been found to be
a representative microservice application regarding several as-
pects (Aderaldo et al., 2017). The main criteria used for select-
ing Sock Shop as the SUT were: (i) the usage of well-known
microservice architectural patterns, (ii) the automated deploy-
ment in containers, and, (iii) the support for different deploy-
ment options.

4.2. Load Testing Tool

We use BenchFlow (Ferme and Pautasso, 2018) as the load
testing tool. BenchFlow is an open-source framework9 that au-
tomates the end-to-end process of executing performance test-
ing. BenchFlow reuses and integrates state-of-the-art technolo-
gies, such as Docker10, Faban11, and Apache Spark12. Bench-
Flow reliably executes load tests, automatically collects perfor-
mance data, and computes performance metrics and statistics.
BenchFlow is also used to validate the reliability of the obtained
results.

BenchFlow users define their performance intent by rely-
ing on a declarative domain-specific language (DSL) for goal-
driven load tests. Declarative templates are provided for ex-
pressing tests’ requirements such as: the test goals, the test
types, the metrics of interest, the test stop conditions (e.g.,
maximum test execution time), and the parameters to vary dur-
ing the test execution. The BenchFlow framework implements
strategies and processes that are driven by the user’s input spec-
ification. In addition, during test execution, BenchFlow moni-
tors the real-time state of the SUT.

4.3. Testing Infrastructure

We deployed the load testing tool and the SUT to two dif-
ferent infrastructures. The first one supports containerized de-
ployment to bare metal at the Hasso Plattner Institute (HPI)
Future SOC (Service-Oriented Computing) Lab. The second
one enables containerized deployment in virtual machines on
top of the VMware ESXi13 hypervisor at the Free University of
Bozen-Bolzano (UNIBZ).

The containerized bare metal machines (HPI) have the fol-
lowing characteristics: Load driver server — 32 GB RAM, 24
cores (2 threads each) at 2300 MHz and SUT server — 896 GB
RAM, 80 cores (2 threads each) at 2300 MHz. Both machines
use magnetic disks with 15 000 rpm and are connected using a
shared 10 Gbit/s network infrastructure.

The containerized deployment in virtual machines (UNIBZ)
has the following characteristics: Load driver server — 4 GB
RAM, 1 core at 2600MHz and SUT server — 8 GB RAM, 4

9https://github.com/benchflow
10http://docker.com
11http://faban.org
12http://spark.apache.org
13https://www.vmware.com/products/esxi-and-esx.html

cores at 2600 MHz with SSDs. Both machines use an EMC
VNC 5400 series network attached storage solution14 and are
connected using a shared 10 Gbit/s network infrastructure.

We rely on Docker CE v17.12 for the deployment of the con-
tainerized application on both infrastructures.

4.4. Definition and Execution of Performance Tests

By relying on BenchFlow’s DSL (Ferme and Pautasso,
2018), users can specify performance tests in a declarative man-
ner. In our case, we defined a load test exploring different
system configurations, as presented in Section 4.6. Bench-
Flow supports a wide range of variables to be automatically
explored during configuration tests, e.g.: (i) number of con-
current users, (ii) amount of RAM/CPU share assigned to each
deployed service, (iii) service configurations, through environ-
ment variables, (iv) number of replicas for each service.

We rely on BenchFlow’s DSL to define all the experiments
reported in this section, and on the BenchFlow framework for
their automated execution, test execution quality verification,
and results retrieval. The environment is deployed as Docker
containers, with each container implementing a distinct mi-
croservice. The containers run on top of the Docker engine,
executing as a daemon process on a hypervisor.

Figure 4a depicts the deployment at HPI, showing the Docker
Swarm including the Docker manager node, and the Docker
worker node that includes the Docker containers. These con-
tainers execute the microservice components. For the HPI de-
ployment, the Docker swarm is deployed on a bare metal ma-
chine. The same deployment is used at UNIBZ. However, for
the UNIBZ deployments, there is an additional virtualization
layer, as shown in Figure 4b. There, the bare metal server runs
VMWare ESXi, which runs two virtual machines in exactly the
same configuration as at HPI.

4.5. Operational Profiles of Workload Situations

In this study, we use the operational profile of two production
systems: a video streaming application, as shown in Figure 5a,
and Wikipedia, as shown in Figure 5b. These operational pro-
files are built using the frequency of occurrence of workload
situations, which is specified in terms of the number of concur-
rent users. To be able to compare the results derived from two
different operational profiles, their maximum workload inten-
sity levels have been scaled to the same maximum number of
users (300).

All experiments have been performed using the video stream-
ing application operational profile and were replicated using the
Wikipedia operational profile, as presented in Section 6. The
scaled operational profiles were used in two steps: (i) the gen-
eration of the workload situations by BenchFlow, and, (ii) for
the computation of the Domain-based metric.

14http://www.emc-storage.co.uk/emc-vnx-5400

8

https://github.com/benchflow
http://docker.com
http://faban.org
http://spark.apache.org
https://www.vmware.com/products/esxi-and-esx.html
http://www.emc-storage.co.uk/emc-vnx-5400

Experimental setting HPI

Load driver server SUT server

Docker manager node

Docker swarm

Docker worker node

Docker
containers

Network

(a) Architectural overview of the setup at HPI: two bare metal ma-
chines run Docker and are part of a Docker swarm; within this swarm,
one machine acts as load driver, the other deploys the SUT and per-
forms the tests.

Experimental setting BZ

Load driver server VM SUT server VM

Docker manager node

Docker swarm

Docker worker node

Docker
containers

VMWare ESXi

Network

Server

(b) Architectural overview of the setup at UNIBZ: one bar metal ma-
chine runs VMWare ESXi, which runs two virtual machines that are
configured exactly as in HPI.

Figure 4: Overview of the testing infrastructures

Design of Synthetic User Behavior

Even if we are not focusing on the behavior of an individ-
ual user, we need to generate a representative workload on the
target system when evaluating its performance. Therefore, we
model a synthetic user behavior that is replayed with different
numbers of users during the experiments. This approach rep-
resents the types of users that are likely to use Sock Shop in
the operational environment that is modeled in this paper. We
model the following behavior mix (Vögele et al., 2018): three
types of users with the respective relative frequency and a max-
imum allowed 5% deviation for the defined frequency distribu-
tion:

• visitor (40%): visits the home page, views the catalog and
the details of some products.

• buyer (30%): visits the home page, logs in, views the cat-
alog and some details, adds a product to the cart, visits the
cart, and creates an order.

• order visitor (30%): visits the home page, logs in, and
views the stored orders.

The summary of all requests sent to Sock Shop, and their occur-
rence number, per user type, are provided in Table 5. We have
defined a workload intensity function (Vögele et al., 2018) that
included a 1 minute ramp-up, and 30 minutes of steady-state
execution, to ensure that the system reaches the steady state
during the test execution. At the end of the test run, the perfor-
mance data is collected. We have added a negative exponential
think time, which is executed between every two requests, with
0, 1, and 5 seconds for minimum, mean, and maximum think
time, respectively, and an allowed deviation of 5% from the de-
fined think time.

4.6. Architecture Deployment Configurations

We deployed the SUT using different architecture deploy-
ment configurations, as specified by the experiment generation
step of the methodology introduced in Section 3. The param-
eters that were varied over the different deployment configura-
tions were the amount of available RAM, the CPU share, and
the replicas for the cart service.

We targeted the cart service, as most of the requests issued
by the designed workload, as described in Section 4.5, targeted
the cart service. The different configurations we explored are
reported in the table of Figure 6c. RAM configurations were se-
lected from the set {0.5 GB, 1 GB}, CPU shares were selected
from the set {0.25, 0.5}, and the number of replicas was selected
from the set {1, 2, 4}. The remaining resources of the server on
which we deployed the SUT were shared among all the other
services that are part of the Sock Shop application and man-
aged by the Docker engine. In order to avoid containers to be
“killed” during the execution in case of out-of-memory, we dis-
abled this behavior in the Docker engine. We further replicated
the experiments with architecture configurations of increased
memory (8 and 16 GB). In total, we executed 264 experiments
with different configurations.

9

50 100 150 200 250 300

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Workload situation (number of users)

fre
qu
en
cy

(a) Video streaming application

50 100 150 200 250 300
0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

Workload situation (number of users)

fre
qu
en
cy

(b) Wikipedia

Figure 5: The operational profiles used in the study. Workload situations are scaled to an equal maximum value (300).

4.7. Baseline Requirement
To assess the impact of the workload situations and of the

architecture deployment configurations on the response time,
we defined a baseline response time Γ j, as defined in Step 3 in
Section 3.1, and we evaluated the fraction of the services that
experienced a response time higher than the considered baseline
as defined in Step 4a in Section 3.1.

The baseline requirement is measured through an experiment
run with the workload situation λ0 = 2 (i.e., two concurrent
users) and the highest memory resources allocated for the ex-
periments with normal workload. Thus, for the experiments in
Section 5.1 and 5.2, we used the architecture deployment con-
figuration of 4 GB memory, 1 CPU share, and 1 replica for
the cart service. To discuss the choice of such a baseline re-
quirement, we further performed a sensitivity analysis, which
is presented in Section 6.

By relying on the operational data presented in Section 3,
we identified the following aggregated workload situations as
load test specification {50, 100, 150, 200, 250, 300} as described
in Step 2 of Section 3.2. In addition, 19 services of Sock Shop,
S = {s1, s2, . . . , s19} were configured in the SUT. Each concur-
rent user calls multiple services while accessing the system. For
instance, one service may be called by a user to insert an item
into the shopping cart, to proceed to checkout, and to confirm
the order. We have observed that most of the requests issued by
such workload situations target the cart microservice.

4.8. Attacks
The attacks reported in this paper were conducted in the

controlled UNIBZ lab environment that was described in Sec-
tion 4.3, and used a modified version of the Mirai malware.

Antonakakis et al. (2017) describe the Mirai botnet that was
used to create a DDoS attack in 2016. This attack harnessed the
power of insecure IoT (Internet of Things) devices. The authors
have also presented an analysis of the Mirai timeline covering
seven months, which included up to 600k security intrusions.
Kambourakis et al. (2017) presented a review of Mirai and its
mutations and alerted to the risks posed by large botnets formed
by using compromised IoT devices.

Mirai is composed of two components (Barker, 2016):

• The “command and control” (CNC) server, written in Go,
provides the admin interface that is used to perform at-
tacks, to store the list of available bots, to parse, format,
and build shell commands, and to send the commands to
the appropriate bots.

• One or more bots, written in C, are used to perform the ac-
tual attacks and infect new devices. To find and infect new
devices, a bot performs a brute force scan over a range
of IP addresses. Once it finds an IP address, it performs
a port scan against it. If the bot is able to successfully
connect to an IP address and port, it tries to authenticate
using frequently used credentials (e.g., admin/admin, sup-
port/support, or admin/12345). If the bot is able to authen-
ticate, it tries to enable the system’s shell, to access it, and
to report back to the CNC server the just discovered new
bot, i.e., the IP address, the port, and the authentication
credentials (Barker, 2016).

A bot is able to perform attacks using different protocols
(Barker, 2016): it performs denial-of-service attacks using the
transport protocols UDP or TCP, flooding target devices with

10

Table 5: Summary of requests, their numbers of occurrence by user types (V=visitor, B=buyer, O=order visitor), and actual overall workload relative frequency
(Mix)

Label Path Method V B O Mix (%)
home /index.html GET 2 3 2 11.85%
login /login GET 0 1 1 3.21%
getCatalogue /catalogue GET 2 4 2 12.56%
catalogueSize /catalogue/size?size={} GET 1 1 0 3.07%
cataloguePage /catalogue?page={}&size={} GET 1 1 0 3.07%
catalogue /category.html GET 1 1 0 3.07%
getItem /catalogue/{} GET 1 5 1 8.42%
getRelated /catalogue?sort={}&size={}&tags={} GET 1 2 0 3.78%
showDetails /detail.html?id={} GET 1 2 0 3.78%
tags /tags GET 1 1 0 3.07%
getCart /cart GET 4 9 3 23.34%
addToCart /cart POST 0 1 0 0.71%
basket /basket.html GET 0 1 0 0.71%
createOrder /orders POST 0 1 0 0.71%
getOrders /orders GET 0 1 1 3.21%
viewOrdersPage /customer-orders.html GET 0 1 1 3.21%
getCustomer /customers/{} GET 2 5 1 10.78%
getCard /card GET 0 1 0 0.71%
getAddress /address GET 0 1 0 0.71%

packets, or sending malformed packets; it is also able to at-
tack using HTTP, sending HTTP GET or POST requests con-
taining cookies and random data. As long as the connection is
held, i.e., a valid response is returned, the bot continually floods
the target device with HTTP requests, with the goal to render
the target devices inoperable, or to consume excessive amounts
of resources on routers, servers, and intrusion prevention sys-
tems/intrusion detection systems devices. From the publicly
available Mirai source code15, we extracted the bot to conduct
Mirai attacks to a given target, for a configurable time. We re-
moved the scanner part, which searches for new devices to in-
fect. In a test with attacks, we start the load test in the same way
as without attacks but also run a parallel process, which waits
for 3 minutes and then starts one Mirai bot with the following
parameters:

• duration of attack: long attacks of 20 minutes (1200 sec-
onds) and short attacks of 5 minutes (300 seconds);

• protocol used: HTTP;

• IP address to attack: the IP address of the SUT, i.e., the
machine with Sock Shop installed;

• number of threads: 256.

The attacks were conducted from the load driver server ma-
chine, which is configured with 4 GB RAM, 1 core at 2600MHz
and is connected to the SUT server machine through a 1000
MBit network.

After the attack, the test continues as before for the remaining
time, i.e., for 7 minutes, resulting in a total testing time of 30
minutes for the tests with attack and without attack.

15https://github.com/queupe/Mirai-Source-Code

5. Experiments

In this section, we analyze and discuss the results of our sets
of experiments on Sock Shop that uses the video streaming op-
erational profile. This set of experiments compares the two test-
ing infrastructures, as described in Section 5.1, and evaluates
the effects on the Domain-based metric of the attacks on Sock
Shop in the virtual environment, as presented in Section 5.2.

5.1. Domain-based Metrics — Bare Metal vs. Virtual Environ-
ment

Figure 6 shows the Domain-based metric computed for each
architecture deployment alternative, for the defined workload
situations, and for the two environments: HPI (Figure 6a), and
UNIBZ (Figure 6b). The total Domain-based metric for each
investigated architecture deployment configuration is shown in
the table contained in Figure 6c. The outer plot in the figure
represents the theoretical maximum (i.e., the total probability
mass of the given operational profile as described in Step 1 in
Section 3.2). The theoretical maximum is reached if all tests
pass and it corresponds to the set of frequency values of the
operational profile at the workload situations. The other lines
in the figure represent the Domain-based metric computed for
an investigated architecture deployment configuration. None of
the analyzed architecture deployments reached the theoretical
maximum, because of the scalability assessment failures iden-
tified.

For the HPI environment, the configuration with 1 GB of
RAM, 0.5 CPU share, and four cart replicas did not exhibit
scalability assessment failures for up to 150 concurrent users.
However, when the number of concurrent users was increased
to values greater than 150, we observed a significant decrease

11

https://github.com/queupe/Mirai-Source-Code

(a) HPI

(b) UNIBZ
Configuration (α) Domain-based metric

RAM CPU # Replicas HPI UNIBZ
0.5 GB 0.25 1 0.615 0.541
1 GB 0.25 1 0.776 0.539
1 GB 0.5 1 0.536 0.541

0.5 GB 0.5 1 0.515 0.548
0.5 GB 0.5 2 0.510 0.541
1 GB 0.25 2 0.741 0.548
1 GB 0.5 2 0.534 0.541

0.5 GB 0.5 4 0.505 0.550
1 GB 0.25 4 0.372 0.543
1 GB 0.5 4 0.567 0.543

(c) D(α,S) per configuration

Figure 6: Domain-based metric per workload situations ((a) and (b)) and in to-
tal (c) in the two environments (HPI, UNIBZ) for the operational profile of the
Video streaming application over different configurations α. Blue area = total
probability mass, green area = best configuration, violet area = best configura-
tion for low loads.

in the value of the Domain-based metric, as shown by the violet
area in Figure 6a. The best observed value for the Domain-
based metric, D(α, S) ≈ 0.78, was achieved for the configura-
tion with 1 GB of RAM, 0.25 CPU share, and one cart replica.
The addition of cart replicas resulted in performance degrada-
tion as assessed by the Domain-based metric, as illustrated in
the table of Figure 6c. In contrast, the worst observed value for
the Domain-based metric, D(α, S) ≈ 0.37, was achieved for the
configuration with 1 GB of RAM, 0.25 CPU share, and four
cart replicas. This is an interesting result with significant im-
plications for the assessment of architecture deployment alter-
natives, since adding additional replicas with the same memory
and CPU configuration may decrease the application’s perfor-
mance for the HPI environment.

The results for the UNIBZ experiments show a significant
performance degradation as assessed by the Domain-based met-
ric when compared to the HPI experiment. In addition, most of
the experiment results are within a narrow Domain-based met-
ric range as can be seen from Figure 6b, where most of the
lines overlap. Figure 6b does not show scalability assessment
failures for up to 100 concurrent users. Further increases in
the number of concurrent users causes the Domain-based met-
ric to decrease with a similar rate, for all architecture deploy-
ment configurations. The configuration with 0.5 GB of RAM,
0.5 CPU share, and four cart replicas showed the best value
for the Domain-based metric, D(α, S) ≈ 0.55. The worst value
achieved for the Domain-based metric employed an architec-
ture deployment configuration with 1 GB of RAM, 0.25 CPU
share, and one cart replica.

Discussion These results show that determining the best de-
ployment configuration for a system requires the systematic
application of engineering approaches for quantitative perfor-
mance assessment. We have found that adding more CPU
power or increasing the number of Docker container replicas
may not result in system performance improvement in the bare-
metal environment (HPI). In the virtual environment (UNIBZ),
the Domain-based metric oscillates over a narrow range. Scal-
ing beyond 0.5 GB of RAM, 0.5 CPU share, and 4 cart replicas
does not lead to a better performance if the number of users is
greater than 150.

The difference in the Domain-based metric assessment be-
tween the HPI and UNIBZ environments, for the same archi-
tecture deployment configurations, as shown in the table of Fig-
ure 6c, seems to indicate that additional architecture factors,
such as VMware Hypervisor overhead, I/O bandwidth, may be
impacting system performance.

These findings support the recommendation that practition-
ers can benefit from the application of the methodology pro-
posed in this paper, by evaluating the expected operational pro-
file and deployment alternatives in their own context. More-
over, these findings suggest that bottleneck analysis and careful
performance engineering activities should be executed before
additional resources are added to the architecture deployment
configuration.

12

5.2. Performance Under Attacks
In this section, we evaluate the performance degradation of

the SUT when it is under attack. In our experiments, we ex-
ecuted security intrusions in parallel to the normal workload,
and computed the Domain-based metric for each of the con-
sidered setups. The attacks were launched with the Mirai bot-
net. BenchFlow, Mirai, and the SUT were executed on differ-
ent servers. Table 6 compares the total Domain-based metric

Table 6: Domain-based metric per configuration with and without attacks of
different duration. The best configurations with respect to the Domain-based
metric are highlighted.

Configuration (α) Domain-based metric
RAM CPU # Replicas Attack duration

5m 20m no attack
0.5 GB 0.25 1 0.516 0.541 0.541
0.5 GB 0.5 1 0.517 0.498 0.548
0.5 GB 0.5 2 0.460 0.512 0.541
0.5 GB 0.5 4 0.514 0.540 0.550
1 GB 0.25 1 0.541 0.407 0.539
1 GB 0.25 2 0.517 0.512 0.548
1 GB 0.25 4 0.540 0.543 0.543
1 GB 0.5 1 0.499 0.407 0.541
1 GB 0.5 2 0.473 0.495 0.541
1 GB 0.5 4 0.543 0.467 0.543

computed for the different deployment configurations for “short
attacks”, “long attacks”, and “no attack” tests. Rows in the ta-
ble show that certain security attacks, such as the one used in
our experiments, may influence system performance and there-
fore impact the Domain-based metric – the effect being more
prominent under the “long attack” (20 minutes attack). While
in the “no attack” test the Domain-based metric is assessed as
D(γ,L;S) ' 0.55 under all system configurations, for “short
attack” and “long attack”, the Domain-based metric varied in a
broader range. The worst Domain-based metric assessment is
for the 20-minute attack with the deployment configuration of
1 GB RAM, 0.25 CPU and 1 replica, where the Domain-based
metric was assessed as D(γ,L;S) ' 0.407.

Discussion The obtained results indicate that developers of so-
phisticated algorithms for intrusion detection of performance-
impacting attacks may use customer-affecting metrics (e.g., re-
sponse times) as one of the approaches used to detect intru-
sions. Specifically, in large mission-critical systems, where
performance metrics are baselined and tracked, detecting de-
viations from the performance baseline could be implemented
as a simple add-on to performance tracking.

6. Experiments and Analysis’ Variations with Increased
Resources

The assessment of the Domain-based metric in virtual envi-
ronment experiments with limited resources has shown small
variability with respect to the architecture deployment con-
figurations evaluated, as shown in Figure 6b. To understand
how much the environment influences the experiments, we per-
formed new sets of experiments with increased environmental

resources: we changed the configuration of the VMware ESXi-
based virtual machine for the SUT to 8 CPUs with 1 core and
16 GB RAM. The variations discussed in the following sections
are performed within this new environment.

Increased memory. We replicated the experiments in the table
of Figure 6c by including new configurations with increased
memory sizes, either 8 or 16 GB was used, as shown in the ta-
ble of Figure 7b. By comparing Figure 6a and the table of Fig-
ure 6c with Figure 7a and the table of Figure 7b, respectively,
we see that the added memory had little impact on scalabil-
ity assessment, as the Domain-based metric only improved by
about 0.030. Nonetheless, more variation of the Domain-based
metric among different configurations can be observed, when
comparing Figure 6a and Figure 7a.

Under Attack. In order to obtain the results of Section 5.2,
we selected a 20-minutes long security attack. This was done
to facilitate the analysis of the impact on the Domain-based
metric, as shown in Table 6. In the experiment where addi-
tional resources were added to the testing environment, and the
security attack was run for 20 minutes, we were able to ob-
serve performance degradation of the SUT as reflected by the
Domain-based metric, as shown in Figure 8. In particular, the
blue area in Figure 8 and first row in Table 6, which represents
the Domain-based metric obtained for the best architecture de-
ployment configuration, and the red area in Figure 8, which
represents the Domain-based metric obtained best architecture
deployment configuration for low loads, were impacted by the
security attack.

A different operational profile. To assess the impact of differ-
ent operational profiles on the proposed methodology, we have
repeated the analysis using a different operational profile.

For this analysis, we replicated our study on the opera-
tional profile extracted from a Wikimedia dump of accesses to
Wikipedia pages during the whole month of July 2016. The
scaled loads extracted from such a database are illustrated in
Figure 5b. The scalability assessment results obtained when us-
ing this new operational profile are shown in Figure 9, where the
performance impact of security attacks can be seen in every ar-
chitecture deployment configuration. The theoretical Domain-
based metric maximum is reached up to the workload situations
of 100 concurrent users, with and without attacks.

Sensitivity Analysis. To discuss the choice of the baseline
threshold, described in Section 3, we performed a sensitivity
analysis by scaling the threshold vector by a factor t (scale)
between 0.2 and 50, including the case t = 1 for the original
threshold. Choosing a threshold lower than the original one
may result in a lower Domain-based metric as more services
would in principle fail. Vice-versa, choosing a threshold greater
than the original one may result in a higher Domain-based met-
ric as fewer services would fail. In the latter case, we can study
the increase of the Domain-based metric over the scaled thresh-
olds. This will give us a sense of the goodness of the choice
of the original threshold. Such analysis is performed for all ex-
periments with and without attack (Figure 8a) and with more
resources (Figure 7a). Table 7 summarizes the major findings

13

(a) More memory: 8 and 18 GB

Configuration (α) D(α, S)
Memory CPU # Replicas More resources

8 0.25 4 0.779
16 0.25 2 0.716
8 0.25 2 0.662
16 0.25 4 0.651
8 0.25 1 0.599
16 0.5 4 0.544
8 0.5 2 0.544
16 0.5 4 0.544
8 0.5 1 0.544
16 0.5 1 0.541
8 0.5 2 0.541
16 0.25 1 0.521

(b) D(α, S) over configurations

Figure 7: Domain-based metric over configurations, per workload situation (a) and total (b) — configurations with 8 or 16 GB of memory — Video streaming profile

(a) No attack (b) Attack

Configuration (α) D(α,S)
Memory CPU # Replicas No Attack Attack

0.5 0.25 2 0.743 0.457
1 0.25 2 0.665 0.66

0.5 0.25 4 0.627 0.526
1 0.25 4 0.626 0.445

0.5 0.25 1 0.544 0.483
1 0.5 4 0.542 0.249

0.5 0.5 4 0.519 0.519
1 0.5 2 0.519 0.518

0.5 0.5 2 0.519 0.518
1 0.5 1 0.519 0.355

0.5 0.5 1 0.515 0.357
1 0.25 1 0.496 0.355

(c) D(α,S) over configurations

Figure 8: Domain-based metric over configurations per workload situation ((a) and (b)) and total (c), without and with Mirai attack — Video streaming profile

(a) No attack (b) Attack

Configuration (α) D(α,S)
Memory CPU Replicas No Attack Attack

0.5 0.25 2 0.777 0.505
1 0.25 2 0.693 0.689

0.5 0.25 4 0.672 0.474
0.5 0.25 1 0.657 0.596
1 0.5 4 0.657 0.26
1 0.25 4 0.629 0.475
1 0.5 2 0.617 0.617

0.5 0.5 2 0.617 0.617
0.5 0.5 4 0.617 0.617
1 0.5 1 0.617 0.443

0.5 0.5 1 0.612 0.443
1 0.25 1 0.603 0.404

(c) D(α,S) over configurations

Figure 9: Domain-based metric over configurations per workload situation ((a) and (b)) and total (c), without and with Mirai attack — Wikipedia

14

in the three cases. Figure 10 and Figure 11 illustrate the sen-
sitivity analysis in two cases: for the architecture deployment
configuration that achieves the best Domain-based metric for
low loads, and the overall architecture deployment configura-
tion that achieves the best Domain-based metric.

Figure 10 illustrates the analysis for the configuration that
achieved the best value for the Domain-based metric, for low
loads, which corresponds to the red area in Figure 8a. In Fig-
ure 10, the top six plots show the values of the Domain-based
metric over the scale t, for each of the six workload situations
(50–300).

Each plot reports both the value of t and the corresponding
threshold value on the x-axis and the Domain-based metric for
the given threshold on the y-axis. The (blue) dashed horizontal
line represents the value of the operational profile for the given
workload situation, whereas the (red) dashed vertical line indi-
cates the value of the original threshold, t = 1 (i.e., 0.43). In the
legend of the plot, we report the workload situation (load), the
value of the scale t at which the Domain-based metric reaches
its maximum within the interval [0.2, 50], the final gap in per-
centage between such maximum, and the theoretical maximum
of the horizontal dashed line, which is the value obtained from
the operational profile.

The polygon and the table at the bottom of Figure 10 illus-
trate the Domain-based metric over workload situations, un-
der the original threshold (i.e., t = 1), for the configuration
that achieved the best value of the Domain-based metric of the
SUT’s normal behavior, as shown in Figure 8a.

The plots show that the theoretical maximum, i.e., the value
obtained from the operational profile, is reached within the
scale range, for workload situations (loads) up to 150 concur-
rent users. When the workload situation (load) is increased,
the gap between the Domain-based metric and the theoretical
maximum is greater than 11%. When using those thresholds,
the value of the Domain-based metric can increase (e.g., for
the workload situations of 150 and 250). However, there is
no unique scale factor within the chosen range that could be
adopted for all workload situations.

In addition, with a small increment (at most t = 1.76) of the
original threshold, in four out of six cases the Domain-based
metric value is constant for up to t = 20, which indicates that
even increasing the original threshold by a scale of 20, the num-
ber of failing services (and the Domain-based metric) do not
change for the majority of the loads.

Figure 11 reports the sensitivity analysis for the overall
architecture deployment configuration that achieved the best
Domain-based metric, as illustrated by the blue area in Fig-
ure 8a. Similarly, no unique scale factor within the chosen
range can be adopted for all workload situations. Again, with
a small increment of the original threshold, in five out of six
cases the Domain-based metric value is constant up to t = 19
scale.

Table 7 illustrates the sensitivity analysis experimental re-
sults with attack, without attack, and with the use of additional
resources. The table shows the configuration that achieved the
best Domain-based metric, the maximum number of workload
situations at which the theoretical maximum obtained from the

Experiment Best Configuration Max Load Max scale
Memory CPU Replicas

No attack 0.5 0.25 2 150 t = 7
Attack 1 0.25 2 150 t = 9
More resources 8 0.25 4 150 t = 9

Table 7: Sensitivity analysis for the best configuration of experiment for nor-
mal behavior, with attack, and with more resources - operation profile of the
streaming video application

operational profile is achieved, within the interval [0.2, 50] of
the scale t, and the scale at which such optimum is reached.
The table shows that regardless of the state of the system (un-
der or no attack) and more resources for the test, the SUT does
not reach the theoretical maximum for loads greater than 150
even when the threshold is 50 times the original one.

Discussion In this section, we have analyzed the sensitivity of
the Domain-based metric to the value of the scalability thresh-
old introduced in Step 3 of Section 3.2. Specifically, we were
interested in assessing if the selected value of the threshold is
sensitive enough to correctly determine the pass/fail criteria for
scalability assessment. As it can be seen from Figure 10, for
the load levels of 50 and 100 concurrent users, the employed
threshold value of 0.43 is sufficient to achieve the fraction of
the total probability mass assigned the load levels of 50 and 100.
The figure depicts the case of the architecture deployment con-
figuration that achieved the best Domain-based metric, for low
workload situations (red polygon in Figure 8a). Therefore, we
can observe that for the load levels of 50 and 100, the Domain-
based metric scalability is not sensitive to the threshold value,
because the system is scalable for these load levels. In contrast,
for the load levels of 150, 200, 250 and 300, the scalability met-
ric is sensitive to the threshold multiplication factor, because
of the degradation in performance observed for these load lev-
els. For example, for the load level of 150, a scale factor of
seven is required to achieve the fraction of the total probability
mass of the operational profile associated with 150 concurrent
users. For increased load levels, even a threshold scalability
factor greater than 50 is required. A similar result holds true
for the experiments run under Mirai attack and more resources
(shown in Table 7). Figure 11 illustrates the sensitivity analy-
sis for the best configuration (blue polygon in Figure 8a). For
this case, the plots show a clear distinction between the work-
load situations of less than 100 concurrent users, and more than
100 concurrent users. For the workload situation of more than
100 concurrent users, a threshold of over 50 times the origi-
nal threshold was required to achieve the optimal value of the
Domain-based metric. Therefore, we can conclude that using
a threshold of Γ = x(λ) + 3 × σ(λ) for the baseline λ (as pro-
posed in Step 3 of Section 3.2) is adequate to detect scalability
degradation, as the sensitivity of the Domain-based metric to
the threshold value is related to system scalability issues for the
larger load level values of 150, 200, 250 and 300.

15

**

*

*

*** *

Load: 50, Final Gap: 0%, Scale:1

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
04

0.
08

Scale

D
om

ai
n

m
et

ric

**

**

*

*** *

*

Load: 100, Final Gap: 0%, Scale:1

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50
0.
00

0.
10

0.
20

Scale
D

om
ai

n
m

et
ric

**

* * * *

* *

*
**

Load: 150, Final Gap: 0%, Scale:7

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale

D
om

ai
n

m
et

ric

**
**

**

*** *

**

Load: 200, Final Gap: 22.5%, Scale:21

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale

D
om

ai
n

m
et

ric

*** * * *

* *

*

* * *
* * * *

* * * * * * * * *
* *

**

*

*

Load: 250, Final Gap: 11.3%, Scale:50

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale

D
om

ai
n

m
et

ric

**

************* *

**

Load: 300, Final Gap: 25.1%, Scale:1.76

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
03

0.
06

Scale

D
om

ai
n

m
et

ric

Workload (number of users)

D
om

ai
n

m
et

ric
 p

er
 w

or
kl

oa
d

0.
00

0.
10

0.
20

50 100 150 200 250 300
load

 D
om

ai
n

M
et

ric

Workloads

50

Domain-based metric

100
150
200
250
300

0.106
0.185
0.087
0.166
0.046
0.037

Configuration: Memory=0.5 CPU=0.25 Replicas=2

Figure 10: Sensitivity analysis for the best configuration for low loads as red polygon in Figure 6a that is illustrated by the plot and the table at the bottom.

16

**

*

** *

**

Load: 50, Final Gap: 0%, Scale:0.64

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
04

0.
08

Scale

D
om

ai
n

m
et

ric

**

*** *

* *

**

Load: 100, Final Gap: 0%, Scale:4

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale
D

om
ai

n
m

et
ric

**

**

*** *

Load: 150, Final Gap: 22.5%, Scale:19

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale

D
om

ai
n

m
et

ric

**

**

*** *

Load: 200, Final Gap: 22.6%, Scale:30

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale

D
om

ai
n

m
et

ric

**

**

*** *

Load: 250, Final Gap: 22.6%, Scale:41

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
10

0.
20

Scale

D
om

ai
n

m
et

ric

* * * *

*

* * * * *
* * *

* * * * * * * * * *
* *

*

Load: 300, Final Gap: 14.3%, Scale:26

0.43 4.26 8.52 12.78 17.04 21.3

1 10 20 30 40 50

0.
00

0.
03

0.
06

Scale

D
om

ai
n

m
et

ric

●

●

● ●
●

●

Workload (number of users)

D
om

ai
n

m
et

ric
 p

er
 w

or
kl

oa
d

0.
00

0.
10

0.
20

50 100 150 200 250 300
load

 D
om

ai
n

M
et

ric

Workloads
50

Domain-based metric

100
150
200
250
300

0.106
0.139
0.166
0.166
0.152
0.014

Configuration: Memory=0.5 CPU=0.5 Replicas=1

Figure 11: Sensitivity analysis for the best configuration as the dark blue polygon in Figure 6a that is illustrated by the plot and the table at the bottom.

17

7. Discussion

7.1. Summary of the Analysis

In this section, we summarize the results obtained from the
analysis of the experiments and their replications.

Testing infrastructure We have found that adding more CPU
power or increasing the number of Docker container replicas in
a bare-metal testing infrastructure may not result in system per-
formance improvement. On the other hand, limited resources
allocated to a virtual testing infrastructure constraints perfor-
mance within a narrow range and do not lead to a better perfor-
mance if the number of users is large. The observed difference
in the performance assessment between the bare metal and a
virtual testing infrastructure seems to indicate that additional ar-
chitecture factors may be impacting system performance, such
as VMware Hypervisor overhead, I/O bandwidth, etc. Also, in
limiting cases measurement noise is common. The methodol-
ogy results show the importance of executing a detailed perfor-
mance analysis in such systems.

Having more Docker containers improves the performance
of the services regardless of the presence or duration of the at-
tacks. On the other hand, fewer replicas simplify the traceabil-
ity of the attack. Providing additional resources to the testing
infrastructures reduces the need for replicas.

Scalability assessment and detection of security breaches
We have shown that the proposed quantitative approach con-
sistently reports the same findings with different operational
profiles and more resources allocated to the experiments. We
have further demonstrated that using customer-affecting metrics
(e.g., response times) to detect intrusions constitutes an efficient
and privacy-friendly solution, as those metrics are intrinsically
publicly available. Finally, we can conclude that our baseline
threshold computed on the statistical distance from the average
behavior of a small number of users accessing a relatively large
amount of resources for the interaction with the SUT is ade-
quate to detect scalability degradation.

7.2. Threats to Validity

In this work, we have introduced a methodology and a frame-
work for scalability assessment of microservice architecture
configurations by leveraging operational profiles and load tests,
as illustrated in Figure 1. We have identified the following
threats to validity:

Operational profile data analysis. The Domain-based met-
ric introduced in this paper relies on the careful analysis of
production usage operational profile data. Many organizations
will not have access to accurate operational profile data, which
might impact the accuracy of the Domain-based metric assess-
ments. Several approaches can be used to overcome the lack of
accurate operational profile data (Avritzer and Weyuker, 1995),
such as: using related systems as a proxy for the SUT, conduct-
ing user surveys, and analyzing log data from previous versions
of the SUT. In this paper, we opted for the first option and per-
formed the experiments on the SUT based on the operational
profile of a video streaming application. This choice might have

bound our results to the specific operational profile. Thus, we
further replicated the analysis on the Wikipedia operational pro-
file. The results of the two sets of experiments are very similar
and support our choice.

Experiment generation. Experiment generation requires
the estimation of each performance test case probability of oc-
currence, which is based on the operational profile data. When
the operational profile data granularity is coarse, there is a threat
to the accuracy of the estimated operational profile distribu-
tion. Some of the suggested approaches to overcome the coarse
granularity of the operational profile data are: performing the
computation of operational profile data using analytic or simu-
lation models (Weyuker and Avritzer, 2002), and developing
heuristics based on Markovian approximations (Avritzer and
Weyuker, 1995). In this work, we used data derived from two
different operational profiles, which enriched our studies with
different granularities and operational distributions.

Baseline computation. The suggested approach for the
quantitative definition of the scalability requirements proposed
in this paper consisted of defining the expected pass/fail crite-
ria for system scalability based on a specified percentile (e.g.,
3 × σ) of the system response. This approach works well if
we assume that a baseline performance for each microservice
was validated. However, the approach could provide a worst-
case scalability requirement, if one of the microservices’ base-
line performance is already exhibiting significant performance
degradation. In this work, we have validated our choice by per-
forming a sensitivity analysis on the original threshold.

Experiment execution. The proposed approach for auto-
mated execution and analysis of the load test cases needs to
be assessed for continuous improvement using a declarative ap-
proach and automated deployment. To this extent, we have built
a framework called PPTAM that can be easily deployed and re-
distributed in a production environment (Avritzer et al., 2019).
The reproducibility package is also publicly available (Avritzer
et al., 2020).

Domain-based metric calculation. The implicit assumption
used in the calculation of the Domain-based metric is that the
fraction of calls for the service s j occurs with rate δ j and can be
computed from the application’s access log. This assumption
can be used to support good heuristics to compute δ j, for several
practical microservice architectures. However, in general, the
activation of each of the microservices might not be mutually
exclusive. In such cases, the application of queueing network
modeling approaches for the computation of the microservices
activation rates δ j from overall input rates and transition proba-
bilities between microservices might be required (Denning and
Buzen, 1978).

8. Conclusion

In this paper, we have introduced a new four-step approach
for the quantitative assessment of microservice architecture de-
ployment configuration alternatives. Our approach consists of

18

operational profile data analysis, experiment generation, base-
line requirements computation, and experiment execution. Our
Domain-based metric is computed for each microservice alter-
native, specified as an architecture deployment configuration.
The metric (0–1) reflects the ability of the deployed configu-
ration to meet performance requirements for the expected pro-
duction usage load.

We have applied our approach to several deployment config-
urations in a large bare-metal testing environment and a virtu-
alized environment. The approach took advantage of the auto-
mated deployment of Docker containers using a state-of-the-art
load test automation tool. Our approach contributes to the state
of the art by automatically deriving baseline performance re-
quirements in a baseline run and assessing pass/fail criteria for
the load tests, using a baseline computation of these require-
ments. In addition, we were able to fully automatize our ap-
proach and provide a framework called PPTAM that can be de-
ployed in any real production environment.

We have found that in auto-scaling cloud environments, care-
ful performance engineering activities shall be executed be-
fore additional resources are added to the architecture deploy-
ment configuration, because if the bottleneck resource is lo-
cated downstream from the place where additional resources
are added, increased workload at the bottleneck resource may
result in a significant performance degradation. We also found
that our model is able to capture performance degradation re-
lated to intrusions. The approach we proposed is stable under
the variation of experimental settings like reference operational
profile and baseline threshold to detect service failure.

Acknowledgment

This work has been partly supported by EsulabSolutions,
Inc., the German Federal Ministry of Education and Research
(grant no. 01IS17010, ContinuITy), the European Union’s
Horizon 2020 research and innovation programme (grant no.
825040, RADON), the GAUSS national research project,
which has been funded by the MIUR under the PRIN 2015 pro-
gram (Contract 2015KWREMX), and by the Swiss National
Science Foundation (project no. 178653). The authors would
like to thank the HPI Future SOC Lab for providing the infras-
tructure.

References

Aderaldo, C.M., Mendona, N.C., Pahl, C., Jamshidi, P., 2017. Benchmark re-
quirements for microservices architecture research, in: Proc. 1st IEEE/ACM
International Workshop on Establishing the Community-Wide Infrastruc-
ture for Architecture-Based Software Engineering, (ECASE@ICSE 2017),
IEEE. pp. 8–13.

Alshuqayran, N., Ali, N., Evans, R., 2016. A systematic mapping study in
microservice architecture, in: Proc. IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA 2016), pp. 44–51.

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran,
J., Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al., 2017.
Understanding the Mirai botnet, in: USENIX Security Symposium, pp.
1092–1110.

Avritzer, A., Ferme, V., Janes, A., Russo, B., van Hoorn, A., Schulz, H.,
Menasché, D., Rufino, V., 2020. Reproducibility package for “Scala-
bility assessment of microservice architecture deployment configurations:

A domain-based approach leveraging operational profiles and load tests”.
URL: https://doi.org/10.5281/zenodo.3689500.

Avritzer, A., Ferme, V., Janes, A., Russo, B., Schulz, H., van Hoorn, A., 2018.
A quantitative approach for the assessment of microservice architecture de-
ployment alternatives by automated performance testing, in: Proceedings of
the 12th European Conference on Software Architecture (ECSA), pp. 159–
174.

Avritzer, A., Menasché, D.S., Rufino, V., Russo, B., Janes, A., Ferme, V., van
Hoorn, A., Schulz, H., 2019. PPTAM: production and performance test-
ing based application monitoring, in: Companion of the 2019 ACM/SPEC
International Conference on Performance Engineering (ICPE), pp. 39–40.

Avritzer, A., Tanikella, R., James, K., Cole, R.G., Weyuker, E., 2010. Moni-
toring for security intrusion using performance signatures, in: Proceedings
of the first joint WOSP/SIPEW International Conference on Performance
Engineering (ICPE), ACM. pp. 93–104.

Avritzer, A., Weyuker, E.J., 1995. The automatic generation of load test suites
and the assessment of the resulting software. IEEE Trans. Softw. Eng. 21.

Barker, C., 2016. Mirai (DDoS) source code review. URL: https://medium.
com/@cjbarker/mirai-ddos-source-code-review-57269c4a68f.

Casalicchio, E., Perciballi, V., 2017. Auto-scaling of containers: The impact of
relative and absolute metrics, in: Proc. FAS*W@SASO/ICCAC, pp. 207–
214.

Denning, P.J., Buzen, J.P., 1978. The operational analysis of queueing network
models. ACM Comput. Surv. 10, 225–261.

Ferme, V., Pautasso, C., 2018. A declarative approach for performance tests ex-
ecution in continuous software development environments, in: Proceedings
of the 2018 ACM/SPEC International Conference on Performance Engineer-
ing (ICPE), pp. 261–272.

Francesco, P.D., Malavolta, I., Lago, P., 2017. Research on architecting mi-
croservices: Trends, focus, and potential for industrial adoption, in: Proc.
2017 IEEE International Conference on Software Architecture (ICSA 2017),
pp. 21–30.

Heger, C., van Hoorn, A., Mann, M., Okanovic, D., 2017. Application perfor-
mance management: State of the art and challenges for the future, in: Pro-
ceedings of the 2017 ACM/SPEC International Conference on Performance
Engineering (ICPE), pp. 429–432.

Jiang, Z.M., Hassan, A.E., 2015. A survey on load testing of large-scale soft-
ware systems. IEEE Trans. Softw. Eng. 41, 1091–1118.

Kambourakis, G., Kolias, C., Stavrou, A., 2017. The Mirai botnet and the IoT
zombie armies, in: Proceedings of the Military Communications Conference
(MILCOM 2017), IEEE. pp. 267–272.

Milenkoski, A., Vieira, M., Kounev, S., Avritzer, A., Payne, B.D., 2015. Evalu-
ating computer intrusion detection systems: A survey of common practices.
ACM Computing Surveys (CSUR) 48, 12.

Newman, S., 2015. Building Microservices. 1st ed., O’Reilly Media, Inc.
Pahl, C., Jamshidi, P., 2016. Microservices: A systematic mapping study, in:

Proc. 6th International Conference on Cloud Computing and Services Sci-
ence (CLOSER 2016), pp. 137–146.

Schulz, H., Okanovic, D., van Hoorn, A., Ferme, V., Pautasso, C., 2019.
Behavior-driven load testing using contextual knowledge—approach and ex-
periences, in: Companion of the ACM/SPEC International Conference on
Performance Engineering (ICPE), ACM.

Taylor, R.N., Medvidovic, N., Dashofy, E.M., 2009. Software Architecture:
Foundations, Theory and Practice. John Wiley & Sons, Inc.

Ueda, T., Nakaike, T., Ohara, M., 2016. Workload characterization for mi-
croservices, in: Proc. IISWC, pp. 1–10.

Vögele, C., van Hoorn, A., Schulz, E., Hasselbring, W., Krcmar, H., 2018.
WESSBAS: Extraction of probabilistic workload specifications for load
testing and performance prediction—A model-driven approach for session-
based application systems. Softw. and Syst. Modeling 17, 443–477.

Weyuker, E.J., Avritzer, A., 2002. A metric for predicting the performance of
an application under a growing workload. IBM Syst. J. 41, 45–54.

Weyuker, E.J., Jeng, B., 1991. Analyzing partition testing strategies. IEEE
Trans. Softw. Eng. 17, 703–711.

19

https://doi.org/10.5281/zenodo.3689500
https://medium.com/@cjbarker/mirai-ddos-source-code-review-57269c4a68f
https://medium.com/@cjbarker/mirai-ddos-source-code-review-57269c4a68f

	Introduction
	Related Work
	Previous Work of the Authors
	Microservice Architectural Challenges
	Performance Assessment of Microservice Architectures
	Intrusion Detection System Tools

	Methodology and Framework
	Computation of the Domain-based Metric
	Applications
	Framework Architecture

	Experiment Design
	System Under Test
	Load Testing Tool
	Testing Infrastructure
	Definition and Execution of Performance Tests
	Operational Profiles of Workload Situations
	Architecture Deployment Configurations
	Baseline Requirement
	Attacks

	Experiments
	Domain-based Metrics — Bare Metal vs. Virtual Environment
	Performance Under Attacks

	Experiments and Analysis' Variations with Increased Resources
	Discussion
	Summary of the Analysis
	Threats to Validity

	Conclusion

