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Abstract. Microservices have emerged as an architectural style for de-
veloping distributed applications. Assessing the performance of architec-
tural deployment alternatives is challenging and must be aligned with
the system usage in the production environment. In this paper, we intro-
duce an approach for using operational profiles to generate load tests to
automatically assess scalability pass/fail criteria of several microservices
deployment alternatives. We have evaluated our approach with differ-
ent architecture deployment alternatives using extensive lab studies in a
large bare metal host environment and a virtualized environment. The
data presented in this paper supports the need to carefully evaluate the
impact of increasing the level of computing resources on performance.
Specifically, for the case study presented in this paper, we observed that
the evaluated performance metric is a non-increasing function of the
number of CPU resources for one of the environments under study.

1 Introduction

The microservices architectural style [13] is an approach for creating software
applications as a collection of loosely coupled software components. These com-
ponents are called microservices, and are supposed to be autonomous, automat-
ically and independently deployable, and cohesive [13]. This architecture lends
itself to decentralized deployment, and for continuous integration and deploy-
ment by developers. Several large companies (e.g., Amazon and Netflix) are
reporting significant success with microservice architectures [9].

Currently, several deployment alternatives are possible for microservices de-
ployment, as for example, serverless microservices using lambdas, container-
based deployment (e.g., Docker5), virtual machines per host, and several hosts.
Of course, depending on the microservice granularity, a combination of these
deployment mechanisms could be used. The available deployment alternatives

5 https://www.docker.com/
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and their configuration parameters imply a large space of architectural configu-
rations [15] to choose from.

Microservices are supposed to be independent from each other. However, the
underlying deployment environment might introduce coupling and impact the
overall application performance. Coupling can occur at the load balancer, at the
DNS look-up, and at the different hardware and software layers that are shared
among the microservices. Ueda et al. [16] report the performance degradation of
microservice architectures as compared to an equivalent monolithic deployment
model. The authors have analyzed the root cause of performance degradation
of microservice deployment alternatives (e.g., due to virtualization associated
with Docker) and have proposed performance improvements to overcome such a
degradation. Therefore, microservice architects need to focus on the performance
implications of architectural deployment alternatives. In addition, the impact of
the expected production workloads on the performance of specific microservices
deployment configuration needs to be taken into account. The alternatives for
microservice architecture deployment considered in this paper are memory allo-
cation, CPU fraction used and number of Docker container replicas assigned to
each microservice.

In this paper, we introduce a quantitative approach for the performance as-
sessment of microservice deployment alternatives. The approach uses automated
performance testing results and high-level performance modeling to quantita-
tively assess each architectural configuration in terms of a domain metric intro-
duced in this paper. For performance testing, we focus on load tests based on
operational workload situations [10,17], e.g., arrival rates or concurrent number
of users.

Our approach for the domain metric evaluation is based on the input do-
main partition testing strategy [19] and domain-based load testing [5] that was
designed for the performance testing of telecommunication systems. In parti-
tion testing based on input domains, the input domain is divided into subsets
that have equivalent fault-revealing behavior. In domain-based load testing the
load testing domain is divided into subsets that have equivalent workload situ-
ations [5].

Operational profile data is used to estimate the probability of occurrence of
each operational workload situation in production. Each operational situation is
reflected by a performance test case that is weighted by its relevance based on the
operational profile. Scalability requirements are used to assess each architectural
configuration. The resulting quantitative assessment is a measure between 0–1
that assesses the fitness of a certain architecture alternative to perform under a
defined workload situation.

The key contributions of this paper are as follows:

– a new quantitative approach for the assessment of microservice deployment
alternatives, and

– the experimental validation of the proposed approach.

We have evaluated the introduced domain metric for ten different configura-
tions based on two different memory allocations, two different CPU allocations,



and three different values for the number of Docker container replicas. The ex-
periments were executed in two data center environments. We evaluated for each
environment the best performing architectural configuration. It is very signifi-
cant that in both environments, increasing the number of containers for the
service being evaluated, or the fraction of CPU allocation did not guarantee
better performance. Therefore, we can conclude that it is very important for
practitioners to carefully assess expected operational profiles and deployment
alternatives of their applications using quantitative assessment approaches, such
as the one introduced in this paper.

The remainder of this paper is organized as follows. Section 2 contains a sum-
mary of the reviewed literature on microservice architecture challenges and per-
formance assessment. Section 3 contains an overview of the proposed approach
for performance assessment of microservice architectures. Section 4 contains the
experimental design, while Section 5 presents the experimental results obtained
by applying the proposed approach. Section 6 contains the threats to validity
identified in this research. Section 7 presents our conclusions and suggestions for
future research. A reproducibility package is provided online [4].

2 Related Work

In this section we present a summary of the reviewed literature on microservice
architecture challenges.

2.1 Microservice Architectural Challenges

Alshuqayran et al. [2] present a comprehensive literature review of microservice
architectural challenges. The authors focus on the challenges, the architecture
descriptions, and their quality attributes. They have found that most of the
current research on microservice architecture quality attributes has focused on
scalability, reusability, performance, fast agile development, and maintainability.
Pahl and Jamshidi [14] present a systematic survey of the existing research on
microservices and their application in cloud environments. They have found that
microservices research is still immature and there is a need for additional ex-
perimental and empirical evaluation of the application of microservices to cloud
environments. Their literature survey has also identified the need to develop
microservices tool automation.

Francesco et al. [9] present a characterization of microservice architecture
research. The authors’ focus was on answering research questions about publica-
tion trends, research focus, and likelihood for industrial adoption. They reported
that research on microservices is in the initial phases concerning architecture
methodologies and technology transfer from academia to industry. Most of the
research focus seems to be on architecture recovery and analysis. An impor-
tant finding of this paper is that most of the literature reviewed is related to
the design phase, and only one research did address requirements. They have



also found from their literature survey that industrial technology transfer of the
architecture methodology is still far-off.

Esposito et al. [7] present design challenges of microservice architectures. The
authors have identified security and performance as major challenges resulting
from size and complexity. They have proposed to address these challenges by
carefully trading-off security and performance.

2.2 Performance Assessment of Microservice Architectures

Kozhirbayev and Sinnott [11] present the performance assessment of microser-
vice architectures in a cloud environment using several container technologies.
The authors have reported on the experimental design and on the performance
benchmarks that were used for this performance assessment. Casalicchio and
Perciballi [6] analyze the impact of using relative and absolute metrics to assess
the performance of autoscaling containers. They have concluded that for CPU-
dominated workloads, the use of absolute metrics can lead to better scaling
decisions.

McGrath and Brenner [12] present an approach for the design of a performance-
oriented serverless computing platform. The authors have evaluated the perfor-
mance of their approach using measurements derived from a prototype. They
have also discussed how to achieve increased throughput using their approach.

3 Approach

In this paper, we extend our previous approaches [5,18] to define a new methodol-
ogy for the assessment of microservice deployment alternatives — also referred to
as (architectural) configurations. Our methodology enables an automatic assess-
ment of scalability criteria for architectural configurations and their comparison.
For each configuration, this results in a measure—the so-called domain-metric—
that quantifies the configuration’s ability to satisfy scalability requirements un-
der a given operational profile.

3.1 Summary of Previous Work

In [18], we introduced a metric to evaluate software architecture alternatives
with system workload growth. This metric uses the requirement definition, high-
level architecture modeling, and system measurement results to assess the system
architecture’s ability to meet architecture requirements as a function of workload
increases.

In [5], we introduced an approach for the assessment of telecommunication
systems using Markovian approximations. This approach uses operational data
and a resource-based Markov state definition to derive an efficient test suite
that is then used as the basis for the domain-based reliability assessment of the
software under test (SUT). The Markovian approximation is used to estimate
the steady-state probability of occurrence of each test case. In this way, the
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Fig. 1: Overview of the approach

test suite can be effectively reduced to focus on the performance test cases that
are most-likely to represent production usage. In domain-based load testing, the
input domain is the workload, e.g., in terms of the arrival rate or the concurrent
number of users. The total workload is divided into subsets that are related to the
probability of occurrence of each workload situation [5]. Therefore, we make an
implicit assumption that the testing domain can be divided into fault-revealing
subsets. Each subset is then mapped to a load test.

3.2 Computation of the Domain-based Evaluation Metric

The approach introduced in this paper and illustrated in Figure 1 consists of the
following steps: 1. Analysis of operational data, i.e., the quantitative estimation
of the probability of occurrence of a certain workload situation (e.g., number
of concurrent users) based on the analysis of the operational data, 2. Experi-
ment generation, i.e., the automated generation of the load test cases for the
deployment configurations under evaluation, 3. Baseline computation, i.e., the
quantitative definition of the scalability requirements that consist of the ex-
pected pass/fail criteria for the load tests, e.g., based on a specified threshold of
the system response time for the expected workload, 4. Experiment execution,
i.e., the execution of load test cases for the architectural configurations specified
in the experiment generation step, and the computation of the domain-based
microservice architecture evaluation metric.



In this section, we illustrate the approach with a running example, which is based
on the SUT and the experiments from the evaluation in this paper (Sections 4
and 5). The operational profile is taken from publicly available information about
a video streaming service.

Step 1—Analysis of Operational Data – This step relies on operational
data that includes the workload situations Λ observed over time, i.e., each point
in time tk is assigned a workload situation λi ∈ Λ. We make no specific assump-
tions about what metric is used to represent the workload situation. Example
metrics include the number of concurrent users or arrival rates of requests. We
use this operational profile data to estimate for each workload situation λi ∈ Λ
its probability of occurrence p(λi) estimated by the relative frequency of occur-
rence f(λi). The probability of occurrence will be used to weigh each test case
execution result. This is called probability of occurrence because it provides a
test coverage function for each test case with respect to the total operational
profile probability distribution, which we denote by total probability mass.

To illustrate this step, we first analyze the operational profile data to create a
user profile of the frequency of occurrence (i.e., state frequency) of the number of
concurrent users (i.e., workload situation) found in the system at a certain time
t. The graph of the state frequency distribution is shown in Figure 1 (result of
Step 1). Then, for each workload situation λi, we set p(λi) to the corresponding
state frequency. The test suite coverage criteria is based on the values of p(λi).
Then, we use the operational profile obtained from the video streaming service
as a proxy for the operational profile of the system being evaluated. We have
scaled the number of concurrent users from the operational profile to 0–300.

Step 2—Experiment Generation – This step generates the load test
suite to analyze the architectural configurations. The four elements of this step
are the load test sequence, the load test template, the architectural deployment
configurations, and the baseline requirements (see result of Step 2 in Figure 1).
The load test sequence is obtained by sampling the empirical distribution of
workload situations f into a so-called aggregated mass of workload situations f ′

that are representative for the neighboring workload situations. A value f ′(λ′)
represents the aggregated probability of neighboring workload situations of λ in
f . The reason for having this aggregated mass based on sampling is that it would
not be feasible to execute load tests for every single workload situation due to
the huge combinatorial space of configurations. The load test template TΛ is a
load test specification that is parameterized by a workload situation λi ∈ Λ. An
instance of this load test template will be executed for each element of the cross
product of the set of load test sequences and the architectural configurations.
The baseline requirement Γi defines for each service sj provided by the SUT the
criteria of a passed/failed test based on a performance measure Φ. We denote
the concrete measurements for Φ for a service sj under a workload situation λ
as x(λ)j . We make no specific assumption about the performance measure. An
example used in this section is the average response time of a service.

Step 3—Baseline Computation, Quantitative Definition of the Scal-
ability Requirements – We now describe the approach that can be used to



Table 1: Scalability requirements based on baseline measurements (in seconds)

sj createOrder basket getCatalogue getItem login . . .

x(λ′)j 0.018 0.008 0.011 0.012 0.033 . . .

σ(λ′)j 0.008 0.003 0.002 0.009 0.025 . . .

Γj 0.042 0.017 0.017 0.039 0.108 . . .

calculate the fraction of correctly executed services ŝi for test case i. Initially, a
baseline performance test is run for each configuration αk ∈ A, similarly to the
approach used in our previous work [18]. Such baseline is chosen with a start-
ing workload situation β ∈ Λ. Then, the average response time, x(β)j , and the
standard deviation, σ(β)j for each service sj , under the baseline workload β are
measured.

Using the baseline performance measured for each service sj , the scalability
requirement is defined as Γj = x(β)j + 3 × σ(β)j . Table 1 illustrates the mea-
sured results for the baseline measurement workload β, for all services sj . This
is an innovative approach for scalability requirements definition that employs
the measured no-load baseline performance to automatically define a specific
tolerance for scalability degradation under load.

The proposed approach for setting scalability requirements using a normal
distribution follows an existing approach [3], where the normal distribution was
shown to be a good approximation for the distribution of a stream of concurrent
transactions.

Step 4a—Experiment Execution (Pass/Fail Assessment) – Next, each
service sj is tested under a certain workload λi ∈ Λ and configuration αk ∈ A.
Each test case execution produces a metric between 0–1 that represents the
fraction of the service executions that was assessed as successful by comparison
with the scalability requirement.

Each service sj will be marked as pass for workload λi and configuration αk,
if x(λi)j < Γj . In this case, cj = 1 will be set to denote that service sj has passed
the test, otherwise cj = 0 will be set.

In the following, we drop λ and the configuration α to simplify the notation,
as these computations are repeated for each workload situation and configura-
tion. In addition, as each test case i executes the set of n services {s0, . . . , sn−1}
with activation rates {δ0, . . . , δn−1}, the fraction ŝi of correctly executed calls to
all services can be evaluated as:

ŝi =

n−1∑
j=0

δjcj (1)

The activation rate δj denotes the fraction of calls to the service sj over the
overall number of calls to all services. Table 2 illustrates the pass/fail estimation
for one workload situation λ. For this test case, the fraction of correctly executed
services was evaluated as ŝi = 74.81% (Figure 1).



Table 2: Pass/fail based on scalability requirements (in seconds) for workload
situation λ

sj createOrder basket . . . login . . .

Γj 0.042 0.017 . . . 0.108 . . .

x(λ)j 0.015 0.009 . . . 2.164 . . .

Pass/fail pass pass . . . fail . . .

δj 1.26 % 1.26 % . . . 2.58 % . . .

Step 4b—Experiment Execution (Computation of Domain-based
Metric) – Finally, the domain-based architecture evaluation metric for the con-
figuration α, with respect to a test suite S, D(α, S) can be evaluated as:

D(α, S) =

z∑
i=0

p(λi)ŝi (2)

where p(λi) is the frequency of occurrence corresponding to workload sit-
uation λi (as in Step 1). For the running example, as illustrated in Figure 1,
D(α, S) would be evaluated as 0.615. The contribution of the test case case de-
picted in Figure 1 is 0.142 (0.19×74.81%). The resulting quantitative assessment
is a measure between 0–1 that can be used to assess the performance of different
architectural deployment configurations.

4 Experiment Design

In our evaluation, we show how to use our approach as illustrated in Figure 1
to assess the scalability of an environment for a specific target system and its
architectural alternatives by utilizing the domain metric. We use the operational
profile from Step 1 (Section 3) and apply it to the Sock Shop microservices
demo in two different environments. We execute the experiments generated by
our Step 2 and compare the results against individual baselines as per Step 3.
In doing so, we cannot only show the usage of our approach but also reveal
interesting insights on scalability of microservice applications and its adoption
in practice.

The remainder of this section describes the precise details of our experiment
design. A reproducibility package is provided online [4].

4.1 System Under Test

As system under test (SUT), we utilize the most recent version of the Sock Shop
microservices demo (as per March 28, 20186) built by Weaveworks. It represents
a sample e-commerce website that sells socks, implemented using 12 microser-
vices, one of which is named cart, handling the user’s shopping cart. For the

6 https://microservices-demo.github.io/
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implementation, various technologies were used, e.g., Java, .NET, Node.js and
Go. The Sock Shop has been found to be a representative microservice appli-
cation regarding several aspects [1]. For our research, the usage of well-known
microservice architectural patterns, the automated deployment in containers and
the support for different deployment options were the main criteria for selecting
the Sock Shop as the SUT.

4.2 Load Testing Tool

As the load testing tool, we use BenchFlow [8], that is an open-source framework7

automating the end-to-end process of executing performance testing. BenchFlow
reuses and integrates state of the art technologies, such as Docker8, Faban9, and
Apache Spark10 to reliably execute load tests, automatically collect performance
data, and compute performance metrics and statistics, as well as to validate the
reliability of the obtained results.

BenchFlow users define their performance intent relying on a declarative
domain-specific language (DSL) for goal-driven load tests by using provided
declarative templates for expressing tests’ requirements such as the test goals
and test types, metrics of interest, stop conditions (e.g., maximum test execu-
tion time) and which parameters to vary during the execution of the test. To
satisfy the user’s goal, the BenchFlow framework implements strategies and pro-
cesses to be followed that are driven by the user’s input specification and current
conditions of the SUT during the execution of those processes.

4.3 Testing Infrastructure

We deployed the load testing tool and the SUT to two different infrastructures.
The first one supports containerized deployment to bare metal at the Hasso
Plattner Institute (HPI) Future SOC (Service-Oriented Computing) Lab. The
second one enables containerized deployment in virtual machines on top of the
VMware ESXi11 bare metal hypervisor at the Free University of Bozen-Bolzano
(FUB).

The containerized bare metal machines (HPI) have the following characteris-
tics: Load driver server — 32 GB RAM, 24 cores (2 threads each) at 2300 MHz
and SUT server — 896 GB RAM, 80 cores (2 threads each) at 2300 MHz. Both
machines use magnetic disks with 15 000 rpm and are connected using a shared
10 Gbit/s network infrastructure.

The containerized deployment in virtual machines (FUB) has the following
characteristics: Load driver server — 4 GB RAM, 1 core at 2600MHz and
SUT server — 8 GB RAM, 4 cores at 2600 MHz with SSDs. Both machines use

7 https://github.com/benchflow
8 http://docker.com
9 http://faban.org

10 http://spark.apache.org
11 https://www.vmware.com/products/esxi-and-esx.html
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an EMC VNC 5400 series network attached storage solution12 and are connected
using a shared 10 Gbit/s network infrastructure.

We rely on Docker CE v17.12 for the deployment of the containerized appli-
cation on both infrastructures.

4.4 Architectural Deployment Configurations

By relying on BenchFlow’s DSL [8], users can specify performance tests in a
declarative manner. In our case, we defined a load test exploring different sys-
tem configurations, as presented in Table 4 (on page 12). BenchFlow supports a
wide range of variables to be automatically explored during configuration tests,
namely: i.) number of simulated users, ii.) amount of RAM/CPU share assigned
to each deployed service, iii.) service configurations, through environment vari-
ables, iv.) number of replicas for each service.

We rely on BenchFlow’s DSL to define all the experiments reported in this
section, and on the BenchFlow framework for their automated execution, test
execution quality verification, and results retrieval.

Figure 2 depicts an example SUT deployment, showing one Docker container
for each of the 11 microservices (i.e., 11 containers) and two Docker containers
for the cart service, running on top of a Docker engine, which is deployed as a
daemon process on the bare metal server at HPI and hypervisor at FUB. The
figure shows that a container can have multiple replicas.

Fig. 2: Docker containers for each microservice (13 containers) running on top of
the Docker engine deployed as a daemon process on the bare metal server

4.5 Design of Synthetic User Behavior

Even if we are not focusing on the behavior of an individual user, we need to
generate a representative workload on the target system when evaluating its per-
formance. Therefore, we model a synthetic user behavior that is replayed with
different numbers of users during the experiments, as per our methodology, rep-
resenting types of users that could utilize the Sock Shop in reality. We model

12 http://www.emc-storage.co.uk/emc-vnx-5400-emc-vnx5400-vnx5400-storage
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Table 3: Summary of requests and its numbers of occurrence in the user types
(V=visitor, B=buyer, O=orders visitor) and actual overall workload mix

Label Path Method V B O Mix (%)

home /index.html GET 2 3 2 11.85%
login /login GET 0 1 1 3.21%
getCatalogue /catalogue GET 2 4 2 12.56%
catalogueSize /catalogue/size?size={} GET 1 1 0 3.07%
cataloguePage /catalogue?page={}&size={} GET 1 1 0 3.07%
catalogue /category.html GET 1 1 0 3.07%
getItem /catalogue/{} GET 1 5 1 8.42%
getRelated /catalogue?sort={}&size={}&tags={} GET 1 2 0 3.78%
showDetails /detail.html?id={} GET 1 2 0 3.78%
tags /tags GET 1 1 0 3.07%
getCart /cart GET 4 9 3 23.34%
addToCart /cart POST 0 1 0 0.71%
basket /basket.html GET 0 1 0 0.71%
createOrder /orders POST 0 1 0 0.71%
getOrders /orders GET 0 1 1 3.21%
viewOrdersPage /customer-orders.html GET 0 1 1 3.21%
getCustomer /customers/{} GET 2 5 1 10.78%
getCard /card GET 0 1 0 0.71%
getAddress /address GET 0 1 0 0.71%

the following behavior mix [17]: three types of users with the respective rela-
tive frequency, and a maximum allowed 5% deviation for the defined frequency
distribution:

– visitor (40%): visits the home page, views the catalog and the details of some
products.

– buyer (30%): visits the home page, logs in, views the catalog and some
details, adds a product to the cart, visits the cart, and creates an order.

– order visitor (30%): visits the home page, logs in, and views the stored
orders.

The summary of all requests sent to the Sock Shop and the occurrence of each
requests in the user types are provided in Table 3. We set a workload intensity
function [17] with 1 minute of ramp-up and 30 minutes of steady state, to ensure
the system reaches the steady state and we collect reliable performance data.
We have added a negative exponential think time, which is executed between
every two requests, with 0, 1, and 5 seconds for minimum, mean and maximum
think time respectively and an allowed deviation of 5% from the defined time.

4.6 Experiment Runs

We deployed the SUT using ten different architectural configurations per testing
infrastructure. The parameters we vary over the different configurations are the



Table 4: Domain metric D(α, S) per configuration α = (RAM, CPU, # Cart
Replicas) in the two environments (HPI, FUB). The configuration with the high-
est domain metric is highlighted.

RAM CPU # Cart Replicas D(α, S) (HPI) D(α, S) (FUB)

0.5 GB 0.25 1 0.614 99 0.541 34
1 GB 0.25 1 0.77631 0.538 84
1 GB 0.5 1 0.535 59 0.541 06

0.5 GB 0.5 1 0.515 36 0.547 73
0.5 GB 0.5 2 0.509 95 0.541 11

1 GB 0.25 2 0.740 80 0.547 85
1 GB 0.5 2 0.534 01 0.541 06

0.5 GB 0.5 4 0.505 31 0.54939
1 GB 0.25 4 0.371 62 0.542 72
1 GB 0.5 4 0.567 18 0.542 71

amount of available RAM, the CPU share, and the replicas for the cart service.
We target the cart service, as most of the requests issued by the designed work-
load (see Section 4.5) target the cart service. The different configurations we
explore are reported in Table 4. We set the RAM to [0.5 GB, 1 GB], the CPU
share to [0.25, 0.5], and the number of replicas to [1, 2, 4].

The remaining resources of the server on which we deploy the SUT are shared
among all the other services part of the Sock Shop application and managed
by the Docker engine. In order to avoid containers to be “killed” during the
execution in case of out-of-memory, we disabled this behaviour on the Docker
engine.

By relying on the operational data presented in Section 3, we identified the
following number of users interacting with the system, resembling aggregated
workload situations for the system: 50, 100, 150, 200, 250, 300.

The baseline experiment (Step 3, Section 3), which we conduct to set a
reference point for our methodology, sets the RAM to 4 GB, the CPU share
to 1 and the replicas to 1 for the cart service, and measures the performance
when 2 users interact with the system.

In total, we executed 122 experiments with different configurations.

5 Empirical Results

In this section, we describe and analyze the results of our experiments that are
described in Section 4, as per Step 4 in Section 3. All the experiment results are
available online [4].

5.1 Results

Figure 3 shows the test masses for the different investigated architectural config-
urations in relation to the workload situations Λ (numbers of users). The domain



(a) HPI (b) FUB

Fig. 3: Relative and best test masses per number of users in the two environments
(HPI, FUB)

metrics D(αi, S) for all configurations αi ∈ A are provided in Table 4. The best
relative test mass plot represents the theoretical maximum which is reached if all
tests pass. It can be seen from Figure 3 that none of the alternatives reached the
best relative mass, because of scalability assessment failures identified. For the
HPI environment (bare metal), the configuration with 1 GB of RAM, 0.5 CPU
share, and four cart replicas not have failures for up to 150 users. However, the
relative mass decreases significantly when the number of users is increased. For
the FUB environment (bare metal hypervisor), all configurations do not experi-
ence failures up to 100 users. After such load, the performance decreases with a
similar rate.

For the HPI (bare metal) experiments, the configuration with 1 GB of RAM,
0.25 CPU share and one cart replica has the highest domain metricD(α, S) ≈ 0.78,
followed by the configuration with 1 GB of RAM, 0.25 CPU share, and two
cart replicas having a metric value of about 0.74. The worst configuration with
D(α, S) ≈ 0.37 is 1 GB of RAM, 0.25 CPU share, and four cart replicas. This
is an interesting result with significant implications to the assessment of archi-
tectural deployment alternatives, since adding additional replicas with the same
memory and CPU configuration may decrease the application’s performance for
the HPI environment.

The results for the FUB experiments (VMware ESXi11 bare metal hyper-
visor), show a significant performance degradation as assessed by the domain
metric, when compared to the HPI experiment. In addition, most of the ex-
periment results are within a narrow domain metric range as can be seen from
Figure 3 where most of the lines overlap. The configuration with 0.5 GB of RAM,
0.5 CPU share, and four cart replicas obtains the highest domain metric for the
FUB experiments, with D(α, S) ≈ 0.54. The worst domain metric for the FUB
experiment is for the 1 GB of RAM, 0.25 CPU share and one cart replica con-
figuration. However, this configuration was assessed as the best configuration
among the HPI experiments. The difference in the domain metric assessment
between the HPI and FUB environments for the 1 GB of RAM, 0.25 CPU share,



and one cart replica configuration, seems to indicate that additional architec-
ture factors may be impacting system performance, such as VMware Hypervisor
overhead, I/O bandwidth, etc. These findings support the recommendation that
practitioners have to evaluate the expected operational profile and deployment
alternatives in their own context.

5.2 Analysis

Our results show that determining the best deployment configuration for an
application requires the systematic application of quantitative performance en-
gineering approaches.

We have found that adding more CPU power or increasing the number of
Docker container replicas may not result in system performance improvement.
As listed in Table 4, the best configuration at HPI is 1 GB of RAM, 0.25 CPU
share and one cart replica, with the domain metric value of 0.77631. In addition,
more cart replicas at HPI results in performance degradation. For example, the
configuration with 1 GB of RAM, 0.25 CPU share, and four cart replicas, was
assessed as D(α, S) = 0.37162, while the configuration with 1 GB of RAM, 0.5
CPU share, and one cart replica, was assessed as D(α, S) = 0.55356. At FUB,
the domain metric oscillates over a narrow range. Scaling beyond 0.5 GB of
RAM, 0.5 CPU share, and 4 cart replicas does not lead to a better performance
if the number of users is higher than 150. In addition, the choice of the HPI or
the FUB deployments have significant impact on the domain metric as shown in
Table 4. These findings suggest that bottleneck analysis and careful performance
engineering activities should be executed before additional resources are added
to the architecture deployment configuration.

6 Threats to Validity

The following threats to validity to our research were identified:
Operational profile data analysis. The domain metric introduced in this

paper relies on the careful analysis of production usage operational profile data.
Many organizations will not have access to accurate operational profile data,
which might impact the accuracy of the domain metric assessments. Several
approaches can be used to overcome the lack of accurate operational profile
data [5], such as: using related systems as proxy for the SUT, conducting user
surveys, and analyzing log data from previous versions of the SUT.

Experiment generation. Experiment generation requires the estimation
of each performance test case probability of occurrence, which is based on the
operational profile data. When the operational profile data granularity is coarse
there is a threat to the accuracy of the estimated operational profile distribution.
Some of the suggested approaches to overcome the coarse granularity of the
operational profile data are: performing the computation of operational profile
data using analytic or simulation models [18], and developing heuristics based
on Markovian approximations [5].



Baseline computation. The suggested approach for the quantitative defini-
tion of the scalability requirements proposed in this paper consisted of defining
the expected pass/fail criteria for system scalability based on a specified per-
centile (e.g., 3 σ) of the system response. This approach works well if we assume
that a baseline performance for each microservice was validated. However, the
approach could provide a worst case scalability requirement, if one of the mi-
croservices’ baseline performance is already exhibiting significant performance
degradation.

Experiment execution. The proposed approach for automated execution
and analysis of the load test cases needs to be assessed for continuous improve-
ment using a declarative approach and automated deployment.

7 Conclusion

In this paper, we have introduced a new four-step approach for the quantitative
assessment of microservice architecture deployment alternatives. Our approach
consists of operational profile data analysis, experiment generation, baseline re-
quirements computation, and experiment execution. A domain-based metric is
computed for each microservice deployment alternative, specified as an archi-
tectural configuration. The metric (0–1) reflects the ability of the deployed con-
figuration to meet performance requirements for the expected production usage
load.

We have applied our approach to several deployment configurations in a large
bare metal host environment, and a virtualized environment. The approach took
advantage of automated deployment of Docker containers using a state-of-the-art
load test automation tool.

Our approach contributes to the state of the art by automatically deriv-
ing baseline performance requirements in a baseline run and assessing pass/fail
criteria for the load tests, using a baseline computation of these requirements.

We have found that in auto-scaling cloud environments, careful performance
engineering activities shall be executed before additional resources are added
to the architecture deployment configuration, because if the bottleneck resource
is located downstream from the place where additional resources are added,
increased workload at the bottleneck resource may result in a significant perfor-
mance degradation.
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