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Based on the test description, we generate a 
load test that is tailored to the specified test 
and workload context. We use time series 
forecasting to predict the future workload, 
respecting influencing events such as Black 
Fridays.

We parameterize the generated load test 
automatically by using pre-defined 
annotations. It is then automatically executed 
by BenchFlow for all explored 
configurations, e.g., CPU cores.

We apply regression analysis on the 
results for detecting and locating regressions 
in multiple application versions.

Typical CI/CD pipelines in DevOps have 
huge dimensions, short execution times, and 
are automated. However, load tests need 
much time, resources, and expertise.

With ContinuITy, we make load testing
easy to use and automatically generate 
time-efficient and resource-efficient
load tests, which fit into CI/CD pipelines.

A user creates a load test description in a 
template-based natural language – the 
behavior-driven load testing language.
In this way, the level of expertise required to 
define a load test is reduced.
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Elements of behavior-driven load tests.

We add a concept of events, which influence 
the workload, e.g., Black Friday.

Also, we restrict the test’s workload to the 
relevant microservices (e.g., carts) by 
tracing the individual requests through the 
application. Hence, the required test 
infrastructure is minimized.
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A test consists of given, when, and then
clauses, defining the initial test and workload 
context, the changes made to the initial 
context, and the expected outcome. This is 
based on behavior-driven (functional) testing.

Finally, we provide a report about the test 
results based on the user concern defined in 
the behavior-driven load test.
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Workload forecasting for the Black Friday. Tracing a request to the service carts.
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Natural-language report with a chart.
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