
ContinuITy: Automated Load Testing in DevOps

Load Testing vs. DevOps

Describing Tests in Natural Language

Tailoring to Relevant Contexts & Services

Automated Execution & Analysis

Henning Schulz, André van Hoorn, Dušan Okanović, Stefan Siegl, 
Christoph Heger, Alexander Wert, Tobias Angerstein, Alper Hidiroglu, 
Manuel Palenga, Christoph Zorn, Vincenzo Ferme, Alberto Avritzer

@ContinuITy_proj https://github.com/ContinuITy-Projecthttps://continuity-project.github.io/

Based on the test description, we generate a 
load test that is tailored to the specified test 
and workload context. We use time series 
forecasting to predict the future workload, 
respecting influencing events such as Black 
Fridays.

We parameterize the generated load test 
automatically by using pre-defined 
annotations. It is then automatically executed 
by BenchFlow for all explored 
configurations, e.g., CPU cores.

We apply regression analysis on the 
results for detecting and locating regressions 
in multiple application versions.

Typical CI/CD pipelines in DevOps have 
huge dimensions, short execution times, and 
are automated. However, load tests need 
much time, resources, and expertise.

With ContinuITy, we make load testing
easy to use and automatically generate 
time-efficient and resource-efficient
load tests, which fit into CI/CD pipelines.

A user creates a load test description in a 
template-based natural language – the 
behavior-driven load testing language.
In this way, the level of expertise required to 
define a load test is reduced.

Given Black Friday and service carts

when varying the CPU cores

then ensure response time < 1s.

Black Friday

Given
initial context

When
changes

Then
outcome

date (range)

event

app config

num. users

event

quality gates

run time

metricsapp config

Elements of behavior-driven load tests.

We add a concept of events, which influence 
the workload, e.g., Black Friday.

Also, we restrict the test’s workload to the 
relevant microservices (e.g., carts) by 
tracing the individual requests through the 
application. Hence, the required test 
infrastructure is minimized.

Towards Automating Representative Load Testing in Continuous
Software Engineering
Henning Schulz, Tobias Angerstein, and André van Hoorn
Companion ICPE 2018

Behavior-driven Load Testing Using Contextual Knowledge – Approach 
and Experiences
Henning Schulz, Dušan Okanović, André van Hoorn, Vincenzo Ferme, and
Cesare Pautasso
Proceedings ICPE 2019

Microservice-tailored Generation of Session-based Workload Models for
Representative Load Testing
Henning Schulz, Tobias Angerstein, Dušan Okanović, and André van Hoorn
Proceedings MASCOTS 2019

A test consists of given, when, and then
clauses, defining the initial test and workload 
context, the changes made to the initial 
context, and the expected outcome. This is 
based on behavior-driven (functional) testing.

Finally, we provide a report about the test 
results based on the user concern defined in 
the behavior-driven load test.

1000
runs/day

100
pipelines

1 h
run time

Workload forecasting for the Black Friday. Tracing a request to the service carts.

References

shipping

frontend

payment

orders

carts

The maximum response time
was 942 ms.

Natural-language report with a chart.

Reducing the Maintenance Effort for Parameterization of 
Representative Load Tests Using Annotations
Henning Schulz, André van Hoorn, and Alexander Wert
Journal of Software Testing, Verification and Reliability, 2020

A Declarative Aproach for Performance Tests Execution in Continuous
Software Development Environments
Vincenzo Ferme and Cesare Pautasso
Proceedings ICPE 2018

Concern-driven Reporting of Software Performance Analysis Results
Dušan Okanović, André van Hoorn, Christoph Zorn, Fabian Beck, Vincenzo 
Ferme, and Jürgen Walter
Proceedings ICPE 2019


